Damage Detection of Surface Crack in Composite Quasi-Isotropic Laminate Using Modal Analysis and Strain Energy Method

2006 ◽  
Vol 306-308 ◽  
pp. 757-762 ◽  
Author(s):  
Hui Wen Hu ◽  
Bor Tsuen Wang ◽  
Cheng Hsin Lee

This paper presents a damage detection of surface crack in composite laminate. Carbon/epoxy composite AS4/PEEK was used to fabricate a quasi-isotropic laminate [0/90/±45]2s. Surface crack was created by using laser cutting machine. Modal analysis was performed to obtain the mode shapes of the laminate before and after damage. The mode shapes were then adopted to compute the strain energy, which was used to define a damage index. Consequently, the damage index successfully predicted the location of surface crack in the laminate. Differential quadrature method (DQM) was introduced to calculate the partial differential terms in strain energy formula.

Volume 2 ◽  
2004 ◽  
Author(s):  
Huiwen Hu ◽  
Bor-Tsuen Wang ◽  
Jing-Shiang Su

A nondestructive detection of damage in composite laminates by using modal analysis is investigated in this paper. Continued fiber-reinforced composite AS4/PEEK was used to fabricate a symmetrical laminate plate and a surface crack was created in one side of the laminate plate. The results of modal testing are presented for the application of modal analysis to the laminate plate before and after damage. Changes in mode shapes, mode shape slopes and strain energies were used to calculate the damage index for indicating the damage location. Differential quadrature method (DQM) was introduced to solve the problem of partial derivatives function in strain energy formula. A 3-D finite element model was created for comparison with the experimental results. The model accurately predicted the dynamic responses. It was found that damage index using strain energy method provides a more promising result than other methods in locating the damage.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880869 ◽  
Author(s):  
Yu-Jia Hu ◽  
Wei-Gong Guo ◽  
Cheng Jiang ◽  
Yun-Lai Zhou ◽  
Weidong Zhu

Bayesian operational modal analysis and modal strain energy are employed for determining the damage and looseness of bolted joints in beam structures under ambient excitation. With this ambient modal identification technique, mode shapes of a damaged beam structure with loosened bolted connections are obtained based on Bayesian theory. Then, the corresponding modal strain energy can be calculated based on the mode shapes. The modal strain energy of the structure with loosened bolted connections is compared with the theoretical one without bolted joints to define a damage index. This approach uses vibration-based nondestructive testing of locations and looseness of bolted joints in beam structures with different boundary conditions by first obtaining modal parameters from ambient vibration data. The damage index is then used to identify locations and looseness of bolted joints in beam structures with single or multiple bolted joints. Furthermore, the comparison between damage indexes due to different looseness levels of bolted connections demonstrates a qualitatively proportional relationship.


2008 ◽  
Vol 24 (4) ◽  
pp. 319-332 ◽  
Author(s):  
H.-W. Hu ◽  
C.-B. Wu

AbstractA nondestructive detection method of surface cracks in two dimensional plate structures using modal strain energy method is investigated in this paper. Experimental modal analysis (EMA) is conducted on an aluminum alloy 6061 thin plate to obtain the mode shapes before and after damage under a completely free boundary condition. The measured mode shapes are used to compute the strain energy of the plate. Limited by the measured points, a differential quadrature method is employed to compute the partial differential terms in strain energy formula. A damage index is then defined based on strain energy ratio of the plate before and after damage. This damage index is employed to identify the location of surface crack in plate structure. A finite element analysis (FEA) is also performed to access this approach and demonstrate a feasible process for the experimental work. Good correlation between FEA and EMA results is obtained. The damage index obtained from both FEA and EMA successfully identify the location of surface crack in the aluminum plate. Only few measured mode shapes of the plate are required in this method, which provides a quick, flexible, inexpensive and nondestructive technique to identify the damagein local and global 2D plate structures.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2018 ◽  
Vol 931 ◽  
pp. 178-183 ◽  
Author(s):  
Yuriy Y. Shatilov ◽  
Alexander A. Lyapin

Conducting surveys of multi-storey buildings is a laborious task, because large volumes of visual and instrumental research should be carried out. Reduction of labor costs with an increase in the reliability of information about the state of damage and technical condition is an actual scientific and practical task. One of the ways to solve it is to use non-destructive vibration diagnostic methods. The purpose of carrying out diagnostics with the use of vibration based damage detection methods is to search for damages in structural elements that can cause the deviation of the dynamic parameters of a structure from calculated ones. Determination of the dynamic parameters of the structure, in particular natural frequencies and mode shapes of mechanical systems, is one of the most important tasks that allows obtaining integral information about the state of a structure. This article presents the results of calculations for the localization of slabs defects in a multi-storey building with a transverse crack, span L = 4.5 (m), height H = 0.2 (m), with prestressed reinforcement d = 0.05 (m). Vibration based Damage Index method was used to localize the defect. During the study, reliable localization values of the defect area of the slab were obtained, this indicates that the vibration method for determining the damage index with a sufficient degree of accuracy allowed predicting the site of damage to the structure.


2011 ◽  
Vol 338 ◽  
pp. 375-379
Author(s):  
Jia Hui ◽  
Xiao Peng Wan ◽  
Mei Ying Zhao

Damage causes changes in structural parameters, which in turn, modify dynamic properties, such as natural frequencies and mode shapes. Based on this assumption, this paper presents a new approach to detect different damage modes of composite laminates. Finite element modal analysis is performed on the composite laminate to obtain the modal mode shapes used to compute the modal strain energy. Consequently, an improved damage index is defined by using the ratio of modal strain energies of composite laminates before and after damage. The proposed method is validated using a numerical simulation of a composite laminate with damages in some elements, which are simulated by reducing elements’ material stiffness properties under a combined material properties degradation rule. The result shows that six kinds of damage modes of composite laminates can be detected by this method preferably and give a qualitative description for the damage level.


2013 ◽  
Vol 639-640 ◽  
pp. 1033-1037
Author(s):  
Yong Mei Li ◽  
Bing Zhou ◽  
Guo Fu Sun ◽  
Bo Yan Yang

The research to identify and locate the damage to the engineering structure mainly aimed at some simple structure forms before, such as beam and framework. Damage shows changes of local characteristics of the signal, while wavelet analysis can reflect local damage traits of the signal in time domain and frequency domain. For confirming the validity and applicability of structural damage identification methods, wavelet analysis is used to spatial structural damage detection. The wavelet analysis technique provides new ideas and methods of spatial steel structural damage detection. Based on the theory of wavelet singularity detection,with the injury signal of modal strain energy as structural damage index,the mixing of the modal strain energy and wavelet method to identify and locate the damage to the spatial structure is considered. The multiplicity of the bars and nodes can be taken into account, and take the destructive and nondestructive modal strain energy of Kiewitt-type reticulated shell with 40m span as an example of numerical simulation,the original damage signal and the damage signal after wavelet transformation is compared. The location of the declining stiffness identified by the maximum of wavelet coefficients,analyzed as signal by db1 wavelet,and calculate the graph relation between coefficients of the wavelets and the damage to the structure by discrete or continuous wavelet transform, and also check the accuracy degree of this method with every damage case. Finally,the conclusion is drawn that the modal strain energy and wavelet method to identify and locate the damage to the long span reticulated shell is practical, effective and accurate, that the present method as a reliable and practical way can be adopted to detect the single and several locations of damage in structures.


Sign in / Sign up

Export Citation Format

Share Document