Vibration-Based Damage Detection Techniques for Health Monitoring of Construction of a Multi-Storey Building

2018 ◽  
Vol 931 ◽  
pp. 178-183 ◽  
Author(s):  
Yuriy Y. Shatilov ◽  
Alexander A. Lyapin

Conducting surveys of multi-storey buildings is a laborious task, because large volumes of visual and instrumental research should be carried out. Reduction of labor costs with an increase in the reliability of information about the state of damage and technical condition is an actual scientific and practical task. One of the ways to solve it is to use non-destructive vibration diagnostic methods. The purpose of carrying out diagnostics with the use of vibration based damage detection methods is to search for damages in structural elements that can cause the deviation of the dynamic parameters of a structure from calculated ones. Determination of the dynamic parameters of the structure, in particular natural frequencies and mode shapes of mechanical systems, is one of the most important tasks that allows obtaining integral information about the state of a structure. This article presents the results of calculations for the localization of slabs defects in a multi-storey building with a transverse crack, span L = 4.5 (m), height H = 0.2 (m), with prestressed reinforcement d = 0.05 (m). Vibration based Damage Index method was used to localize the defect. During the study, reliable localization values of the defect area of the slab were obtained, this indicates that the vibration method for determining the damage index with a sufficient degree of accuracy allowed predicting the site of damage to the structure.

Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7394
Author(s):  
Łukasz Doliński ◽  
Marek Krawczuk ◽  
Magdalena Palacz ◽  
Wiktor Waszkowiak ◽  
Arkadiusz Żak

Damage detection in structural components, especially in mechanical engineering, is an important element of engineering practice. There are many methods of damage detection, in which changes in various parameters caused by the presence of damage are analysed. Recently, methods based on the analysis of changes in dynamic parameters of structures, that is, frequencies or mode shapes of natural vibrations, as well as changes in propagating elastic waves, have been developed at the highest rate. Diagnostic methods based on the elastic wave propagation phenomenon are becoming more and more popular, therefore it is worth focusing on the improvement of the efficiency of these methods. Hence, a question arises about whether it is possible to shorten the required measurement time without affecting the sensitivity of the diagnostic method used. This paper discusses the results of research carried out by the authors in this regard both numerically and experimentally. The numerical analysis has been carried out by the use of the Time-domain Spectral Finite Element Method (TD-SFEM), whereas the experimental part has been based on the measurement performed by 1-D Laser Doppler Scanning Vibrometery (LDSV).


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1937 ◽  
Author(s):  
Adam Stawiarski ◽  
Aleksander Muc

In this paper, the elastic wave propagation method was used in damage detection in thin structures. The effectiveness and accuracy of the system based on the wave propagation phenomenon depend on the number and localization of the sensors. The utilization of the piezoelectric (PZT) transducers makes possible to build a low-cost damage detection system that can be used in structural health monitoring (SHM) of the metallic and composite structures. The different number and localization of transducers were considered in the numerical and experimental analysis of the wave propagation phenomenon. The relation of the sensors configuration and the damage detection capability was demonstrated. The main assumptions and requirements of SHM systems of different levels were discussed with reference to the damage detection expectations. The importance of the damage detection system constituents (sensors number, localization, or damage index) in different levels of analysis was verified and discussed to emphasize that in many practical applications introducing complicated procedures and sophisticated data processing techniques does not lead to improving the damage detection efficiency. Finally, the necessity of the appropriate formulation of SHM system requirements and expectations was underlined to improve the effectiveness of the detection methods in particular levels of analysis and thus to improve the safety of the monitored structures.


2006 ◽  
Vol 306-308 ◽  
pp. 757-762 ◽  
Author(s):  
Hui Wen Hu ◽  
Bor Tsuen Wang ◽  
Cheng Hsin Lee

This paper presents a damage detection of surface crack in composite laminate. Carbon/epoxy composite AS4/PEEK was used to fabricate a quasi-isotropic laminate [0/90/±45]2s. Surface crack was created by using laser cutting machine. Modal analysis was performed to obtain the mode shapes of the laminate before and after damage. The mode shapes were then adopted to compute the strain energy, which was used to define a damage index. Consequently, the damage index successfully predicted the location of surface crack in the laminate. Differential quadrature method (DQM) was introduced to calculate the partial differential terms in strain energy formula.


Author(s):  
Byungseok Yoo ◽  
Darryll J. Pines ◽  
Ashish S. Purekar

Research interests in structural health monitoring have increased due to in-situ monitoring of structural components to detect damage. This can secure personal safety and reduce maintenance effort for mechanical systems. Conventional damage detection techniques known as nondestructive evaluation (NDE) have been conducted to detect and locate damaged area in structures. Ultrasonic testing, using ultrasonic transducers or electromagnetic acoustic transducers, is one of the most widespread NDE techniques, based on monitoring changes in acoustic impedance. Although the ultrasonic testing has advantages such as high sensitivity to discontinuities and evaluation accuracy, it requires testing surface accessibility, close location to the damaged area, and decent skill and training of technicians. In recent years, modal analysis techniques to capture changes of mode shapes and natural frequency of structures have been investigated. However, the technique is relatively insensitive to small amount of damage such as an initial crack which can rapidly grow in structures under cyclic loadings. In addition, structural health monitoring based on guided waves has become a preferred damage detection approach due to its quick examination of large area and simple inspection mechanisms. There are many techniques used to analyze sensor signals to bring out features related to damage. A phased array coupled with the guided wave approach has been introduced to effectively analyze complicated guided wave signals. Phased array theory as a directional filtering technique is usually used in antenna applications. By using phased array signal processing, virtually steering the array to find the largest response of source, the desired signal component can be enhanced while unwanted information is eliminated.


2018 ◽  
Vol 4 (2) ◽  
pp. 305 ◽  
Author(s):  
D. Hamidian ◽  
J. Salajegheh ◽  
E. Salajegheh

This paper presents a technique for irregular plate and regular dam damage detection based on combination of wavelet with adoptive neuro fuzzy inference system (ANFIS). Many damage detection methods need response of structures (such as the displacements, stresses or mode shapes) before and after damage, but this method only requires response of structures after damage, otherwise many damage detection methods study regular plate but this method also studies irregular plate. First, the structure (irregular plate or regular dam) is modelled by using ANSYS software, the model is analysed and structure’s responses with damage are obtained by finite element approach. Second, the responses at the finite element points with regular distances are obtained by using ANFIS. The damage zone is represented as the elements with reduced elasticity modules. Then these responses of structures are analysed with 2D wavelet transform. It is shown that matrix detail coefficients of 2D wavelet transform can specified the damage zone of plates and regular dams by perturbation in the damaged area.


2013 ◽  
Vol 20 (3) ◽  
pp. 423-438 ◽  
Author(s):  
A. Sadhu ◽  
B. Hazra

In this paper, a novel damage detection algorithm is developed based on blind source separation in conjunction with time-series analysis. Blind source separation (BSS), is a powerful signal processing tool that is used to identify the modal responses and mode shapes of a vibrating structure using only the knowledge of responses. In the proposed method, BSS is first employed to estimate the modal response using the vibration measurements. Time-series analysis is then performed to characterize the mono-component modal responses and successively the resulting time-series models are utilized for one-step ahead prediction of the modal response. With the occurrence of newer measurements containing the signature of damaged system, a variance-based damage index is used to identify the damage instant. Once the damage instant is identified, the damaged and undamaged modal parameters of the system are estimated in an adaptive fashion. The proposed method solves classical damage detection issues including the identification of damage instant, location as well as the severity of damage. The proposed damage detection algorithm is verified using extensive numerical simulations followed by the full scale study of UCLA Factor building using the measured responses under Parkfield earthquake.


2015 ◽  
Vol 220-221 ◽  
pp. 264-270 ◽  
Author(s):  
Sandris Rucevskis ◽  
Pavel Akishin ◽  
Andris Chate

The paper describes on-going research effort at detecting and localizing damage in plate-like structures using mode shape curvature based damage detection algorithm. The proposed damage index uses data on exclusively mode shape curvature from the damaged structure. This method was originally developed for beam-like structures. The article generalizes the method of plate-like structures characterized by two-dimensional mode shape curvature. To examine limitations of the method, several sets of simulated data are applied and the obtained results of the numerical detection of damage are validated by comparing them with the findings of the case of the experimental test. The simulated test cases include the damage of various levels of severity. In order to ascertain the sensitivity of the proposed method for noisy experimental data, numerical mode shapes are corrupted with different levels of random noise. Modal frequencies and corresponding mode shapes of an aluminium plate containing mill-cut damage are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer (SLV) for the experimental study.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6862
Author(s):  
Kang Yun ◽  
Mingyao Liu ◽  
Jiangtao Lv ◽  
Jingliang Wang ◽  
Zhao Li ◽  
...  

For engineering structures, strain flexibility-based approaches have been widely used for structural health monitoring purposes with prominent advantages. However, the applicability and robustness of the method need to be further improved. In this paper, a novel damage index based on differences in uniform load strain field (ULSF) is developed for plate-like structures. When estimating ULSF, the strain flexibility matrix (SFM) based on mass-normalized strain mode shapes (SMSs) is needed. However, the mass-normalized strain mode shapes (SMSs) are complicated and difficult to obtain when the input, i.e., the excitation, is unknown. To address this issue, the proportional strain flexibility matrix (PSFM) and its simplified construction procedure are proposed and integrated into the frames of ULSF, which can be easily obtained when the input is unknown. The identification accuracy of the method under the damage with different locations and degrees is validated by the numerical examples and experimental examples. Both the numerical and experimental results demonstrate that the proposed method provides a reliable tool for output-only damage detection of plate-like structures without estimating the mass-normalized strain mode shapes (SMSs).


Sign in / Sign up

Export Citation Format

Share Document