Numerical Simulation of SHPB Experiment on Dynamic Behaviour of Ceramic Particle Reinforced MMCs

2006 ◽  
Vol 326-328 ◽  
pp. 1539-1542 ◽  
Author(s):  
Li Sheng Liu ◽  
Dong Feng Cao ◽  
Jiang Tao Zhang ◽  
Qing Jie Zhang

The dynamic behaviour of ceramic particle reinforced metal matrix composites (MMCs) is a key to its application. In this paper, the computational micro-mechanics method (CMM) is used to simulate SHPB experiment of MMCs. The numerical SHPB’s specimen of MMCs is firstly generated by CMM. Then, for verifying the correction of numerical experiment, the Al2O3/6061- T6Al composite is used to carry out numerical experiment, and the Johnson-Holmquist (JH-2) damage model is used to describe the ceramic mechanics behaviour, and a comparison between this numerical method and Unit Cell analytical model is carried out. Lastly, the dynamic behaviour of T6061Al/Al2O3 is investigated by this method.

Author(s):  
Ben Deng ◽  
Lin Zhou ◽  
Fangyu Peng ◽  
Rong Yan ◽  
Minghui Yang ◽  
...  

During the micromachining processes of particle-reinforced metal matrix composites (PMMCs), matrix-particle interface failure plays an important role in the cutting mechanism. This paper presents a novel analytical model to predict the cutting forces in micromilling of this material considering particle debonding caused by interface failure. The particle debonding is observed not only in the processed surface but also in the chip. A new algorithm is proposed to estimate the particles debonding force caused by interface failure with the aid of Nardin–Schultz model. Then, several aspects of the cutting force generation mechanism are considered in this paper, including particles debonding force in the shear zone and build-up region, particles cracking force in the build-up region, shearing and ploughing forces of metal matrix, and varying sliding friction coefficients due to the reinforced particles in the chip-tool interface. The micro-slot milling experiments are carried out on a self-made three-axis high-precision machine tool, and the comparison between the predicted cutting forces and measured values shows that the proposed model can provide accurate prediction. Finally, the effects of interface failure, reinforced particles, and tool edge radius on cutting forces are investigated by the proposed model and some conclusions are given as follows: the particles debonding force caused by interface failure is significant and takes averagely about 23% of the cutting forces under the given cutting conditions; reinforced particles and edge radius can greatly affect the micromilling process of PMMCs.


Sign in / Sign up

Export Citation Format

Share Document