Static Characteristic Analysis of a 3-DOF Micropositioning Table for Grinding

2007 ◽  
Vol 339 ◽  
pp. 177-182 ◽  
Author(s):  
Yan Ling Tian ◽  
Da Wei Zhang ◽  
Bing Yan

In order to improve the machining accuracy of the precision surface grinding machine, a 3-DOF micropositioning table is used as an auxiliary table to form the dual infeed system with nanometer level positioning accuracy. This paper mainly deals with the static characteristics of the micropositioning table. The direct and inverse kinematic models are obtained under different orientation descriptions, and the inherent relationship between different orientation descriptions is investigated. By use of Eular angle description, the reachable orientation space of the micro-positioning table is obtained. The theoretical static stiffness on the top surface of the table is also given, and the experimental tests are carried out to verify the established models.

2012 ◽  
Vol 157-158 ◽  
pp. 291-294
Author(s):  
Hua Long Xie ◽  
Wen Ke Zhang ◽  
Hui Min Guo ◽  
Yong Xian Liu

The analysis of spindle static stiffness is particularly important. The concept of spindle stiffness is introduced. Based on software ANSYS, the finite element analysis model of simplified spindle is established. Two equivalent forms of bearings are discussed and the analysis results are compared. The stress distribution nephogram of spindle is given. The research indicates that using spring-damper element instead of bearings is more suitable and the machining accuracy mainly depends on the stiffness rather than strength.


2015 ◽  
Vol 9 (1) ◽  
pp. 213-218
Author(s):  
Li Qilong ◽  
Guo Xuhong ◽  
Chen Yao ◽  
Ji Wenzheng ◽  
Wang Liang ◽  
...  

The beam is an important component in agantry machining center, and its deformation is believed to have asignificant impact on both the machining accuracy and the machining performance. In this research, the finite element models of a complete gantry machining center and the crossbeam are established, in whicht he restraint and boundary conditions for the finite element analysis are also introduced. It is noted thatthe impact of balance cylinders on the key components is fully considered when dealing with the force analysis. Computed results of the static characteristic analysis showed that the maximum deformation is about 0.080925 mm when crossbeam operates under different conditions. Then, the distortion curve and the compensation curve of guide rail are obtained, and the equation of a fitting compensation curve is also deduced through numerical analysis. This research is expected to provide a theoretical guide for distortion compensation of the crossbeam.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Heng Chen ◽  
Jun-shan Wang ◽  
Chao Chen ◽  
Shi-xiang Liu ◽  
Hai-peng Chen

The analytical model of an axially precompressed cantilever bimorph is established using the Hamilton’s principle in this study, and the static characteristics are obtained. The dynamic equations of the cantilever bimorph in generalized coordinates are established using a numerical method, and the dynamic characteristics are analyzed. Finally, simulations are performed and experiments are conducted to verify the validity of the theory. The results show that increase of axial force has significant amplification effects on the steady-state response amplitude of the displacement, and it reduces the resonance frequency. The response time is still in the millisecond range under a large axial force, which indicates that the bimorph has excellent dynamic characteristics as an actuator.


2006 ◽  
Vol 315-316 ◽  
pp. 450-454
Author(s):  
Yan Ling Tian ◽  
Da Wei Zhang ◽  
Cheng Zu Ren ◽  
Bing Yan

In order to implement dynamic compensation for the wheel vibration of surface grinding machine, a micropositioning table with high stiffness and response frequency is designed. The micropositioning table is driven by three piezoelectric actuators with stiffness of 400 N/μm. Three capacitive sensors are utilized to form feedback control and flexure hinges are used to guide the moving part and preload for the piezoelectric actuators. The kinetics of the micropositioning table has been analyzed to understand the relationship of the control voltage and the posture of the moving part. Due to the coupling characteristic of the system, the decoupling control method is introduced to improve the performance of the table. Experimental tests are carried out to investigate the performance of the micropositioning table.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenhua Yan ◽  
Bing Zhu ◽  
Xuefei Li ◽  
Guoqiang Wang

Low-frequency vibrations (0.5–5 Hz) that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension could achieve real zero stiffness through well-matched parameters, and precompression of the main spring could change the nonlinear seat suspension performance when a driver’s weight changes. The displacement transmissibility curve corresponds with the static characteristic curve of nonlinear suspension, where the middle part of the static characteristic curve is gentler and the resonance frequency of the displacement transmissibility curve and the isolation minimum frequency are lower. Damping should correspond with static characteristics, in which the corresponding suspension damping value should be smaller given a flatter static characteristic curve to prevent vibration isolation performance reduction.


2014 ◽  
Vol 889-890 ◽  
pp. 479-482
Author(s):  
Peng Zhang ◽  
Li Nan Zhang ◽  
Hong Zhi Liu ◽  
De Chun Fu

The braking signal transmitter is a major component of the EBS. The structure and working principle of a braking signal transmitter were introduced. The test bed of the braking signal transmitter was designed and built. The static characteristics of the braking signal transmitter were obtained by analyzing the test data. The inflection points and the slope of each segment curve obtained by the bed test are basically identical to the static characteristic calibration curve. The pressure does not reach the maximum pressure of the static characteristic calibration curve because the gas source pressure does not reach the required test pressure. Keywords: Braking signal transmitter, EBS, static characteristics, bed test.


Sign in / Sign up

Export Citation Format

Share Document