Ectopic Osteoinduction by Variously Demineralized Allogenic Cortical Bone Matrix

2007 ◽  
Vol 342-343 ◽  
pp. 105-108
Author(s):  
J.T. Kim ◽  
H.J. Kang ◽  
H.N. Kim ◽  
J.Y. Choi ◽  
J.M. Lee ◽  
...  

To improve ostegenic healing efficiency by demineralized bone matrix, we evaluated the ectopic bone formation induced by variously demineralized allogenic cortical bone matrices at subcutaneous and muscular sites in rats. The rat tubular cortical bone matrices were demineralized in heated 0.6N HCl at 60 °C for 5 and 20 mins, respectively, using a controlledheat ultrasonic cleaner and implanted in rat dorsal subcutaneous pouches and thigh muscles for 1-3 weeks. The influence of the demineralized condition of bone matrix on cellular proliferation and osteogenic differentiation was also evaluated in vitro by MTT assay and ALP staining. The cortical matrices were completely demineralized within 20 mins by sonication and heating of diluted 0.6 N HCl. The sonicated bone matrices in heated acidic solution at 60 °C revealed no adverse immunogenic and inflammatory response in vivo regardless of demineralized condition. Cellular proliferation and osteoblastic differentiation was facilitated by more fully demineralized. Ectopic bone formation was induced only by demineralized bone matrices and were more favorable in fully demineralized matrices. The ectopic bone induction was more favorably in subcutaneous pouches than in muscular tissue. These findings suggest that a fully demineralized cortical bone matrix maximizes osteogenic repair by exposing more bioactive molecules which in turn induce chondro- and osteognic differentiation of mesenchymal cells around the implanted matrices, and that the sonication of diluted 0.6 N HCl heated at 60 ° C is a rapid and effective method for sterile demineralized graft preparation.

MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2006 ◽  
Vol 24 (7) ◽  
pp. 1454-1462 ◽  
Author(s):  
Yanchun Liu ◽  
Shama Ahmad ◽  
Xiao Zheng Shu ◽  
R. Kent Sanders ◽  
Sally Anne Kopesec ◽  
...  

2007 ◽  
Vol 89 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Don M. Ranly ◽  
Barbara D. Boyan ◽  
Zvi Schwartz ◽  
Christoph H. Lohmann ◽  
Domenico Andreacchio

2005 ◽  
Vol 288-289 ◽  
pp. 245-248 ◽  
Author(s):  
Hong In Shin ◽  
K.H. Kim ◽  
Inn Kyu Kang ◽  
Kyung Sik Oh

To improve the potential of osteogenic repair, we developed macroporous biphasic hydroxyapatite-tricalcium phosphate (HA-TCP) ceramic and evaluated its efficiency as a scaffold for tissue engineered bone regeneration, which allows for appropriate cellular attachment and proliferation with osteogenic differentiation by evaluating ectopic bone formation ability after the implantation of cell-matrix construct in the skid mice subcutaneous pouches for 3 weeks. The macroporous biphasic HA-TCP ceramic matrix, with an average porosity of 86% and 200 µm mean pore size, provided favorable conditions for the attachment of cultured bone marrow derived osteoblastic cells along its inner surfaces in a filed up pattern and the active proliferation of them. The implanted cell-matrix constructs in the subcutaneous pouches induced favorable ectopic bone formation without any remarkable inflammatory reactions. These findings suggest that the biphasic HA-TCP ceramic matrix with macroporous structure has excellent biocompatibility, and that it allows for favorable cellular attachment with the acceleration of cellular proliferation and osteogenic differentiation support as well. Thus, with the controlled biodegradability, the biphasic HA-TCP ceramic may be a promising scaffold for tissue engineered bone regeneration technology.


1991 ◽  
Vol 141 (1) ◽  
pp. 1-7 ◽  
Author(s):  
K. Yamashita ◽  
Y. Horisaka ◽  
Y. Okamoto ◽  
Y. Yoshimura ◽  
N. Matsumoto ◽  
...  

2014 ◽  
Vol 7 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Jose Rolando Prada Madrid ◽  
Viviana Gomez ◽  
Bibiana Mendoza

The aim of this article is to describe the results of the use of demineralized bone matrix putty in alveolar cleft of patients with cleft lip and palate. We performed a prospective, descriptive case series study, in which we evaluated the results of the management of alveolar clefts with demineralized bone matrix. Surgery was performed in 10 patients aged between 7 and 26 years (mean 13 years), involving a total of 13 clefts in the 10 patients. A preoperative cone beam computed tomography (CBCT) was taken to the patients in whom the width of the cleft was measured from each edge of the cleft reporting values between 5.76 and 16.93 mm (average, 11.18 mm). The densities of the clefts were measured with a CBCT, 6 months postoperative to assess bone formation. The results showed a register of gray values of 1,148 to 1,396 (mean, 1,270). The follow-up was conducted for 15 to 33 months (mean, 28.2 months). The results did not show satisfactory bone formation in the cleft of patients with the use of demineralized bone matrix.


Sign in / Sign up

Export Citation Format

Share Document