muscular tissue
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 94)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Samar Ezzat El-Kholy ◽  
Basma Afifi ◽  
Iman El-Husseiny ◽  
Amal Seif

Abstract The biogenic amine octopamine (OA) orchestrates many behavioural processes in insects. OA mediates its function by binding to OA receptors belonging to the G protein-coupled receptors superfamily. Despite the potential relevance of OA for controlling locomotion, our knowledge about the role of each octopaminergic receptor still limited. In this study, RNA interference (RNAi) was used to knockdown each OA receptor type in almost all Drosophila melanogaster tissues using a tubP-GAL4 driver to investigate the loss of which receptor affects the climbing ability of adult flies. The results demonstrated that oamb-deficient flies had impaired climbing ability more than those deficient in other receptors receptive for OA. Targeted RNAi-mediated kockdown of oamb in the nervous system or muscular system decreased the climbing ability, indicating that within Drosophila legs, OA through oamb orchestrated the nervous system control and muscular tissue responses. Oamb-deficient adult males showed morphometric changes in the length and width of leg parts. Transmission electron microscopy revealed that the leg muscles oamb-deficient flies have severe ultrastructural changes compared to those of control flies. The severe impairment in the climbing performance of oamb-deficient flies correlates well with the completely distorted leg muscle ultrastructure in these flies. Taken together, we could conclude that OA via oamb plays an important role in the locomotor activity of Drosophila.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tarek Ismail ◽  
Alexander Haumer ◽  
Alexander Lunger ◽  
Rik Osinga ◽  
Alexandre Kaempfen ◽  
...  

The reconstruction of complex midface defects is a challenging clinical scenario considering the high anatomical, functional, and aesthetic requirements. In this study, we proposed a surgical treatment to achieve improved oral rehabilitation and anatomical and functional reconstruction of a complex defect of the maxilla with a vascularized, engineered composite graft. The patient was a 39-year-old female, postoperative after left hemimaxillectomy for ameloblastic carcinoma in 2010 and tumor-free at the 5-year oncological follow-up. The left hemimaxillary defect was restored in a two-step approach. First, a composite graft was ectopically engineered using autologous stromal vascular fraction (SVF) cells seeded on an allogenic devitalized bone matrix. The resulting construct was further loaded with bone morphogenic protein-2 (BMP-2), wrapped within the latissimus dorsi muscle, and pedicled with an arteriovenous (AV) bundle. Subsequently, the prefabricated graft was orthotopically transferred into the defect site and revascularized through microvascular surgical techniques. The prefabricated graft contained vascularized bone tissue embedded within muscular tissue. Despite unexpected resorption, its orthotopic transfer enabled restoration of the orbital floor, separation of the oral and nasal cavities, and midface symmetry and allowed the patient to return to normal diet as well as to restore normal speech and swallowing function. These results remained stable for the entire follow-up period of 2 years. This clinical case demonstrates the safety and the feasibility of composite graft engineering for the treatment of complex maxillary defects. As compared to the current gold standard of autologous tissue transfer, this patient’s benefits included decreased donor site morbidity and improved oral rehabilitation. Bone resorption of the construct at the ectopic prefabrication site still needs to be further addressed to preserve the designed graft size and shape.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Scott K. Crawford ◽  
Christa M. Wille ◽  
Mikel R. Stiffler-Joachim ◽  
Kenneth S. Lee ◽  
Greg R. Bashford ◽  
...  

Abstract Background Hamstring strain injury (HSI) diagnosis is often corroborated using ultrasound. Spatial frequency analysis (SFA) is a quantitative ultrasound method that has proven useful in characterizing altered tissue organization. The purpose of this study was to determine changes in muscular tissue organization using SFA following HSI. Methods Ultrasound B-mode images were captured at time of injury (TOI) and return to sport (RTS) in collegiate athletes who sustained an HSI. Spatial frequency parameters extracted from two-dimensional Fourier Transforms in user-defined regions of interest (ROI) were analyzed. Separate ROIs encompassed injured and adjacent tissue within the same image of the injured limb and mirrored locations in the contralateral limb at TOI. The ROIs for RTS images were drawn to correspond to the injury-matched location determined from TOI imaging. Peak spatial frequency radius (PSFR) and the fascicular banded pattern relative to image background (Mmax%) were compared between injured and adjacent portions within the same image with separate paired t-tests. Within-image differences of SFA parameters in the injured limb were calculated and compared between TOI and RTS with Wilcoxon rank sum tests. Results Within the injured limb at TOI, PSFR differences in injured and healthy regions did not strictly meet statistical significance (p = 0.06), while Mmax% was different between regions (p < 0.001). No differences were observed between regions in the contralateral limb at TOI (PSFR, p = 0.16; Mmax%, p = 0.30). Significant within-image differences in PSFR (p = 0.03) and Mmax% (p = 0.04) at RTS were detected relative to TOI. Conclusions These findings are a first step in determining the usefulness of SFA in muscle injury characterization and provide quantitative assessment of both fascicular disruption and edema presence in acute HSI.


2021 ◽  
Vol 23 (103) ◽  
pp. 145-151
Author(s):  
L. P. Goralskyi ◽  
M. R. Ragulya ◽  
I. M. Sokulskyi ◽  
N. L. Kolesnik ◽  
I. Y. Goralska

The paper presents the results of macro- and microscopic structure of cattle heart on the organ-, tissue- and cell levels. The samples of the selected material (n = 5) were preserved in a 10–12 % water solution of neutral formaline with its further charging into wax. Histologic sections not more than 10 mkm were made from wax blocks by using a sliding microtome MC-2. Hematoxilin- and eosin staining of histological sections by Heydengine technique was used for studying cell morphology, carrying out morphometrical studies and for receiving review samples. Histoarchitecture of the structural parts of the heart (ventricle and auricle) and their morphometrical parameters were studied on the histological preparations using the light microscopy technique. The experimantal part of the scientific research was carried out in compliance with the requirements of “European Convention for the Protection of Vertebrate Animals used for Experimantal and other Scientific Purposes” (Strussburg, 1986). The cattle heart is located in a thorax between two lungs, in front of a diaphragm and shifted left. In the 3rd–4th rib region the heart adjacents to a thoracic wall. The heart apex is in the 5th rib region. The absolute weight of a cattle heart equals 2143.27 ± 38.76 g, the relative weight equals – 0.43 ± 0.006 %. The net weight of the heart without the epicardial fat equals 1926.12 ± 31.12 g. Herewith, the weight of the aortic ventricle equals 978.54 ± 19.52 g, the weight of the pulmonic ventricle equals 554.17 ± 14.21 g, the weight of both ventricles equals 1539.08 ± 49.74 g. The auricles weight was the least and equaled 397.18 ± 11.21 g. The ratio of the ventricle weight of the heart to its net weight equals 1:0.2, and the ratio of the weight of the auricle myocard to the weight of the ventricle myocard equals 1:0.26. The heart height equaled 23.08 ± 0.11 сm, width – 13.9 ± 0.18 cm and the circumference – 38.08 ± 0.9 cm. According to the analysis of such liniar measurements, the cattle heart in the animals of the experimental group is characterized as that of an enlarged- and short form. The heart wall consists of three sacs – endocardium, myocard and epicardium. The dominating weight of the heart wall is in a muscular layer (myocard), which consists of transversus stripe muscular fibers which are formed on the basis of mononuclear cells – cardiomyocytes which are interlinked into muscular fibers. According to the cytometric analysis of cardiomyocytes, their largest volume – (11225.73 ± 824.42 mkm3) is observed in the aortic ventricle, smaller – (7963.60 ± 627.09 mkm3) – in a pulmonic ventricle and the smallest – (5361.60 ± 583.91 mkm3) in the auricle cardiomyocytes. Herewith, the volumes of cardiomyocytes nuclei in an aortic ventricle (124.55 ± 7.99 mkm3 and in a pulmonuc ventricle (121.67 ± 7.02 mkm3) are nearly the same, and in the auricle cardiomyocytes the nuclei volume is significantly smaller and it equals 101.05 ± 6.04 mkm3 respectively. Such morphometrical parameters of cardiomyocytes and their nuclei are evidenced in their nuclei-cytoplasmatic ratio, which is the smallest in the cardiomyocytes of an aortic ventricle – 0.0113 ± 0.0068, somewhat larger in a pulmonic ventricle – 0.0156 ± 0.0054 and the largest – 0.0234± 0.0058 in the auricle cardiomyocytes, that is connected with the special properties of the muscular tissue of a myocard which is capable of spontaneous rythmic beatings depending on their morphofunctional load: the ventricles pump the blood from the heart to the body performing the gratest load (the aortic ventricle acts a s a pump, and the pulmonic ventricle acts as a container), the auricles receive the blood which returns to the heart from the animal body, performing somewhat smaller load.


2021 ◽  
Vol 64 (10) ◽  
pp. 747-754
Author(s):  
V. E. Gromov ◽  
Yu. A. Shlyarova ◽  
S. V. Konovalov ◽  
S. V. Vorob'ev ◽  
O. A. Peregudov

From accumulated information on structure, properties, stability, and methods of manufacturing the high-entropy alloys (HEA) created early in the 21 century it follows that they possess a whole complex of useful properties that suggests their perspective application in different branches of industry. The authors have made a short review of scientific articles on analysis of possibilities of HEA application in specific science-consuming branches of the last 5 years. In biomedicine the protective coatings made of (TiZrNbHfTa)N and (TiZrNbHfTa)O HEAs possess biocompatibility, high level of mechanical properties, high wear- and corrosion resistance in physiological media, and excellent adhesion. Products made of (MoTa)χNbTiZr passed clinical tests successfully when being implanted to living muscular tissue. The developed HEAs based on rare-earth elements and metals of Fe group such as YbTbDyAlMe (Me = Fe, Co, Ni) possess magnetocaloric effect, have Curie temperature close to room one and may be used in modern refrigerator mechanisms. Changing in stoichiometric composition of CoCrFeNiTi HEAs, alloying them and performing thermal treatment, the researchers succeed in obtaining soft magnetic materials. Fields of HEA application are presented as following: catalysts of ammonia oxidation - (PtPdRhRuCe), ammonia decomposition - (RuRhCoNiIr), oxidation of aromatic alcohols - (Co0,2Ni0,2Cu0,2Mg0,2Zn0,2 ), electric catalysts of hydrogen extraction - (Ni20Fe20Mo10Cr15Co35 ), redox reactions (AlCuNiPtMn and AlNiCuPtPdAu), and oxidation of methanol/ethanol. HEAs can be used as electrodes - anodes and cathodes for Li-ion and Na-ion accumulators. Synthesized nanoporous HEA AlCoCrFeNi has high bulk density up to 700 F/cm3 and cyclic stability (>3000 cycles) and is used in supercapacitors. High-entropy oxides such as (MgNiCoCuZn)0.95Li0.05O with high dielectric properties in a wide frequency range may be used in electronic converters. Examples of HEA application are given: as coatings of ship parts being operated in sea water, various welded joints, parts of nuclear reactors. Perspectives of widening the fields of HEA application are indicated.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1275
Author(s):  
Rosario Foti ◽  
Rocco De Pasquale ◽  
Ylenia Dal Bosco ◽  
Elisa Visalli ◽  
Giorgio Amato ◽  
...  

Scleroderma-like disorders include a set of entities involving cutis, subcutis and, sometimes, even muscular tissue, caused by several pathogenetic mechanisms responsible for different clinical–pathological pictures. The absence of antinuclear antibodies (ANA), Raynaud’s phenomenon and capillaroscopic anomalies constitutes an important element of differential diagnosis with systemic sclerosis. When scleroderma can be excluded, on the basis of the main body sites, clinical evolution, any associated pathological conditions and specific histological features, it is possible to make a correct diagnosis.


2021 ◽  
Vol 12 (4) ◽  
pp. 683-688
Author(s):  
A. A. Semenova ◽  
T. G. Kuznetsova ◽  
V. V. Nasonova ◽  
S. I. Loskutov ◽  
R. V. Nekrasov ◽  
...  

High pH value 45 minutes after slaughter (рН45) has so far been the most frequently used indicator to select pig carcasses with normal course of autolysis. However, in practice, this does not provide meat quality homogeneity. Therefore, carcasses with рН45 > 6.0 were examined for signs of myopathy, which are characteristic for PSE meat, using the histological method. To perform the study, we randomly selected 320 individuals for slaughter out of 1,059 individuals of mixed swine grown in the same conditions. After slaughter, we selected 18 fresh carcasses that demonstrated low рН45. The results of the examination of the muscular tissue (L. dorsi) samples revealed that pork varied in microstructural characteristics. Only 44% of the samples had no signs of myopathy: no contracture nodes and destructive changes in the muscle fibers were present. A total of 39% of the samples were identified to the muscular tissue with mildly expressed myopathy, 17% of the samples – to the muscular tissue with acute myopathy. Thus, among the carcasses with рН45 > 6.0, 56% of the carcasses had signs of mild and acute myopathy, which explains quality homogeneity of meat selected using this criterion. Statistical analysis of the results suggested that the increase in the diameter of the muscle fibers of glycolytic type was related to appearance of signs of mild and acute myopathy – “giant fibers”. Increase in the weight of animals is not a risk factor. The obtained results allowed us to conclude the necessity of developing new approaches to assessing meat quality immediately after the slaughter with the purpose of increasing efficiency in predicting technological properties of meat. Promising directions of developing quick methods in histology allow us to hope that such approaches may be based on the data on microstructure of fresh muscular tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mi-Sun Hur ◽  
Seunggyu Lee ◽  
Tong Mook Kang ◽  
Chang-Seok Oh

AbstractThis study was conducted to determine the muscular arrangement of the human pyloric sphincter using a comprehensive approach that involved microdissection, histology, and microcomputed tomography (micro‐CT). The stomachs of 80 embalmed Korean adult cadavers were obtained. In all specimens, loose muscular tissue of the innermost aspect of the sphincter wall ran aborally, forming the newly found inner longitudinal muscle bundles, entered the duodenum, and connected with the nearby circular bundles. In all specimens, approximately one-third of the outer longitudinal layer of the sphincter entered its inner circular layer, divided the circular layer into several parts, and finally connected with the circular bundles. Anatomical findings around the sphincter were confirmed in micro-CT images. The sphincter wall comprised three layers: an inner layer of longitudinal bundles, a middle layer of major circular and minor longitudinal bundles, and an outer layer of longitudinal bundles. The stomach outer longitudinal bundles were connected to the sphincter circular bundles. The inner longitudinal bundles of the sphincter were connected to the adjacent circular bundles of the duodenum.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1344
Author(s):  
Míriam Illa ◽  
Laura Pla ◽  
Sergio Berdún ◽  
Mònica Mir ◽  
Lourdes Rivas ◽  
...  

Perinatal asphyxia is a major cause of severe brain damage and death. For its prenatal identification, Doppler ultrasound has been used as a surrogate marker of fetal hypoxia. However, Doppler evaluation cannot be performed continuously. We have evaluated the performance of a miniaturized multiparametric sensor aiming to evaluate tissular oxygen and pH changes continuously in an umbilical cord occlusion (UCO) sheep model. The electrochemical sensors were inserted in fetal hindlimb skeletal muscle and electrochemical signals were recorded. Fetal hemodynamic changes and metabolic status were also monitored during the experiment. Additionally, histological assessment of the tissue surrounding the sensors was performed. Both electrochemical sensors detected the pO2 and pH changes induced by the UCO and these changes were correlated with hemodynamic parameters as well as with pH and oxygen content in the blood. Finally, histological assessment revealed no signs of alteration on the same day of insertion. This study provides the first evidence showing the application of miniaturized multiparametric electrochemical sensors detecting changes in oxygen and pH in skeletal muscular tissue in a fetal sheep model.


Sign in / Sign up

Export Citation Format

Share Document