Microstructure and Biocompatibility of Gradient Bioceramic Composite Coating Fabricated by Wide-Band Laser Cladding

2007 ◽  
Vol 342-343 ◽  
pp. 685-688 ◽  
Author(s):  
Qi Bin Liu ◽  
Wen Fei Li ◽  
Bang Cheng Yang

In this study, microstructure and biocompatibility of gradient bioceramic composite coating fabricated by Wide-Band Laser Cladding is investigated. The experimental results indicate that the coating consists of an alloyed transition layer and the bioceramic coating. The bioceramic coating is mainly comprised of HA, CaTiO3, CaO, α-TCP, β-TCP and TiO. The coral-shaped structure and short-rod piled structure existing on the surface of coating. After the implantation of the bioceramic coatings into dogs’ femur for 6, 12, and 24 weeks, hypersusceptibility, rejection and pathological changes are not found. No fiber cyst, necrosis of bone tissue and chronic inflammation obviously appear through slice observation of hard tissues. The bioceramic coating with different ratios of Ca : P have different abilities to induce osteogenesis. At Ca: P=1.4 and 0.6wt.% Y2O3 (No.3 sample), the bioceramic coating is of best bioactivity and biocompatibility.

2005 ◽  
Vol 288-289 ◽  
pp. 351-354 ◽  
Author(s):  
Qi Bin Liu ◽  
Long Jiang Zou ◽  
Min Zheng ◽  
Chuang Dong

In the present paper, bioceramic coating with gradient compositional design was prepared on surface of Ti alloy by using wide-band laser cladding. Effect of rare earth Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicated that adding rare earth can refine grain. Different contents of rare earth affect formation of HA andβ-TCP in bioceramic coating. With increase of rare earth content, HA andβ-TCP were synthesized. When content of rare earth ranged from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA andβ-TCP got best, which indicated that “monosodium glutamate” effect of rare earth played a dominant role. However, when rare earth content was up to 0.8%, the active extent of rare earth in synthesizing HA and β-TCP conversely went down, which demonstrated that rare earth gradually lost its catalysis in manufacturing HA andβ-TCP.


2009 ◽  
Vol 610-613 ◽  
pp. 1224-1226 ◽  
Author(s):  
Qi Bin Liu ◽  
Ling Wu ◽  
Bang Cheng Yang

A gradient bioceramic composite coating was prepared by wide-band laser cladding technique on TC4 alloy surface. The influence of rare earths oxide CeO2 on microstructure of bioceramic coating was studied. The experimental results indicated that CeO2 plays an important role in inducing HA + β-TCP formation. There is almost no HA+β-TCP in bioceramic coating without CeO2. When CeO2 content is higher than 0.2 wt.%, the amount of HA+β-TCP catalyzed by CeO2 gradually increases. The amount of HA+β-TCP becomes largest when CeO2 content is up to 0.4wt%. However, when CeO2 content ranges from 0.6 wt.% to 0.8 wt.%, the amount of synthesizing HA+β-TCP conversely goes down. Through cell culture experiment in vitro, the effect of bioceramic coating with different CeO2 contents on the expression of characteristic protein is investigated. The results show that the largest amount of expression of hydroxyproline(Hyp) at 2d and alkaline phosphatase(ALP) at 6d on coating is complied with 0.4wt.% CeO2, The result indicates that bioactivity of bioceramic coating is dependent on the amount of HA + β-TCP catalyzed by different CeO2 contents.


2014 ◽  
Vol 989-994 ◽  
pp. 775-778
Author(s):  
Zheng Zhang ◽  
Qi Bin Liu ◽  
Ling Yan Zhang ◽  
Hai Bin Jiang ◽  
Pei Ze Jiang

In order to researching the microstructure of bioceramic coating on the surface medical titanium alloy (Ti–6Al–4V), the gradient bioceramic coatings are fabricated by wide-band laser cladding. The influence of multiple rare earths oxide La2O3 and CeO2 on microstructure of bioceramic coating were studied. The experimental results demonstrated that mixed La2O3 and CeO2 have an effect on forming-ability of HA\β-TCP in bioceramic coating and also refined the grain of bioceramic coatings. The largest amount of HA\β-TCP is presented among all the groups when the contents of La2O3 and CeO2 are 0.6wt.%, 0.4 wt.%, respectively.


Author(s):  
Xi-Chen Yang ◽  
Yu-He Yan ◽  
Men-Lin Zhong ◽  
Jiang-Ting Zhang ◽  
Nai-Kun Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document