Dynamic Analysis and Three-Dimensional Finite Element Simulation of Cracked Gear

2007 ◽  
Vol 353-358 ◽  
pp. 1072-1077 ◽  
Author(s):  
Ren Ping Shao ◽  
Xin Na Huang ◽  
Pu Rong Jia ◽  
Wan Lin Guo ◽  
Kaoru Hirota

A method of damage detection and fault diagnosis for gears is presented based on the theory of elastomeric dynamics according to the theory of cracked beam. It takes an advantage of accurate fault diagnosis of gear body using the change of dynamic features and has some advantages for dynamic design of gear systems.The dynamics characteristics, i.e., natural frequency, vibration shape,dynamic response and so on, due to crack of gear tooth are studied, and the gear dynamics characteristics caused by the position and size of crack are deeply investigated by comparison with FEM. The theoretical analysis results are contrasted with numerical simulation results and shows good agreement with the result by FEM. The proposed method can be used to detect damage and diagnose fault for gear structures and also can be applied to designing dynamic characteristics for gear systems.

2014 ◽  
Vol 488-489 ◽  
pp. 589-592
Author(s):  
Min Tan

Inverted siphon structure is a common water conveyance buildings, computer as a efficient computational tool is used, this paper adopt finite element method to carry out three-dimensional finite element simulation analysis for Dahedong inverted siphon structure. Deducing variation law of the inverted siphons stress and displacement in construction process and operating process. Analysis results further verified that design scheme is reasonable and safe, it has certain application value.


2011 ◽  
Vol 325 ◽  
pp. 35-41 ◽  
Author(s):  
Thai Nguyen ◽  
Liang Chi Zhang ◽  
Da Le Sun

A three-dimensional finite element heat transfer model incorporating a moving heat source was developed to investigate the heat transfer mechanism in grinding-hardening of a cylindrical component. The model was applied to analyze the grinding-hardening of quenchable steel 1045 by two grinding methods, traverse and plunge grinding. It was found that the heat generated can promote the martensitic phase transformation in the ground workpiece. As a result, a hardened layer with a uniform thickness can be produced by traverse grinding. However, the layer thickness generated by plunge grinding varies circumferentially. The results are in good agreement with the experimental observations.


Author(s):  
Jason van Dyke ◽  
Michel Nganbe

The reliability of critical aircraft components continues to shift towards onboard monitoring to optimize maintenance scheduling, economy efficiency and safety. Therefore, the present study investigates changes in dynamic behavior of turbine blades for the detection of defects, with focus on substrate cracks and TBC spallation as they relate to vibration modes 1 to 6. Two‐dimensional and three-dimensional finite element simulation is used. The results indicate that TBC spallation reduces natural frequencies due to the ensuing hot spot and overall increase in temperature, leading to drops in blade stiffness and strength. Cracks cause even larger frequency shifts due to local plastic deformation at the crack that changes the energy dissipation behavior. Mode 1 vibration shows the largest shifts in natural frequencies that best correlate to the size of defects and their position. As such, it may be most appropriate for the early assessment of the severity and location of defects.


Sign in / Sign up

Export Citation Format

Share Document