Characteristics and Mechanisms of Dynamic Oxidation for ZrB2-SiC Based UHTC

2008 ◽  
Vol 368-372 ◽  
pp. 1722-1726 ◽  
Author(s):  
Jie Cai Han ◽  
Ping Hu ◽  
Xing Hong Zhang ◽  
Song He Meng

The present study focuses on the dynamic oxidation resistance of five representative ZrB2-SiC based ultra-high temperature ceramics (UHTCs): ZrB2-SiC, ZrB2-SiC-Si3N4, ZrB2-SiC-TiB2, ZrB2-SiCHfB2 and ZrB2-SiC-ZrC using oxyacetylene torch and arc jet testing. The effects of second phase incorporation (Si3N4, TiB2, HfB2, ZrC) on oxidation resistance were compared and analyzed. The mechanism of oxidation based on experimental results and thermodynamic calculations were explored. Some approaches to improvement of oxidation resistance and future directions of UHTC are also presented.

2021 ◽  
Vol 11 (1) ◽  
pp. 1-56
Author(s):  
Dewei Ni ◽  
Yuan Cheng ◽  
Jiaping Zhang ◽  
Ji-Xuan Liu ◽  
Ji Zou ◽  
...  

AbstractUltra-high temperature ceramics (UHTCs) are generally referred to the carbides, nitrides, and borides of the transition metals, with the Group IVB compounds (Zr & Hf) and TaC as the main focus. The UHTCs are endowed with ultra-high melting points, excellent mechanical properties, and ablation resistance at elevated temperatures. These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles, particularly nozzles, leading edges, and engine components, etc. In addition to bulk UHTCs, UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics. Recently, highentropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials. This review presents the state of the art of processing approaches, microstructure design and properties of UHTCs from bulk materials to composites and coatings, as well as the future directions.


2012 ◽  
Vol 512-515 ◽  
pp. 735-738 ◽  
Author(s):  
Jie Guang Song ◽  
Fang Wang ◽  
Ming Han Xu ◽  
Shi Bin Li ◽  
Gang Chang Ji

ZrB2 belongs to a class of ceramics defined ultra-high-temperature ceramics with extremely high melting temperatures, but ZrB2 ceramics is difficultly sintered and easily oxidized. To make ZrB2 ceramics possess the high relative density and the better oxidation resistance. The effects of adding phase on the sintering and oxidation resistance mechanism of ZrB2 based high-temperature multi-phase ceramics were investigated. YAG and Al2O3 help for the densification of ZrB2 based ceramics. The oxidation layer thickness of sintered ceramics adding YAG or YAG-Al2O3 phase is thinner than that of sintered pure ZrB2 ceramics under the same oxidation condition, the oxidation layer thickness of sintered ceramics adding YAG-Al2O3 phase is thinner than that of sintered ceramics adding YAG phase, the oxidation layer thickness of sintered ceramics is decreased with an increased Al2O3 content.


2010 ◽  
Vol 65 ◽  
pp. 118-123
Author(s):  
Roberta Licheri ◽  
Roberto Orrù ◽  
Clara Musa ◽  
Giacomo Cao

The fabrication of MB2-SiC and MB2-MC-SiC (M=Zr, Hf, Ta) Ultra High Temperature Ceramics (UHTCs) is investigated in this work by combining Self-propagating High-temperature Synthesis (SHS) and Spark Plasma Sintering (SPS). Zr, Hf or Ta, B4C, Si, and graphite powders are first reacted by SHS to successfully form in-situ the desired composites. For the case of the Tabased systems, a 20 min ball milling treatment is also required to mechanically activate the SHS reactions. The resulting powders are subsequently consolidated by SPS at 1800 °C and P=20 MPa, thus obtaining products with densities greater than 96% within 30 min of total processing time. Hardness, fracture toughness, and oxidation resistance of the resulting dense UHTCs are among the best when compared to the corresponding values reported in the literature relative to analogous products synthesized by alternative, more energy-consuming and less rapid methods. Thermogravimetric analysis results evidenced the beneficial effect of SiC on the oxidation resistance of the composite materials, while the presence of transition metal carbides appears to be inconvenient from this point of view. This is because, they rapidly oxidize at high temperature to form MxOy and carbon oxides which lead to an increase in sample porosity thus enhancing product oxidation.


Sign in / Sign up

Export Citation Format

Share Document