Wavelet Analysis in Damage Detection for Bridge Structure

2009 ◽  
Vol 417-418 ◽  
pp. 813-816
Author(s):  
Wei Bing Hu ◽  
Wei Hu ◽  
Yu Zheng

The damage of structure leads to variation of structural modal parameter,so the wavelet transform for damage detection is introduced in this paper for considering the variation. First, structural dynamic response signal on the basis of the vibration-based structural damage diagnosis methods is calculated by structural analysis in the paper, then, each of sub-signals is calculated according to wavelet analysis, also, the sub-signal energy spectrum of dynamic response signal and energy spectrum variation are known. By observing the difference of the sub-signal and the variation of the sub-signal energy spectrum, we can get the variation of structural modal parameter and the sub-signal energy spectrum due to the performance degradation of the whole structure and local variations of damage level and location ,so that this method can be used in on-line damage detection for bridge structure.

2009 ◽  
Vol 79-82 ◽  
pp. 1519-1522
Author(s):  
Wei Bing Hu ◽  
Qiang Deng

In this paper, using piezoelectric patches bounded or embedded in composite material structures as actuators and sensors, the system for exciting the structure and sensing its dynamic response can be established. Extracting damage information from the response and monitoring the perturbations of structural dynamics can be implemented using wavelet analysis. This will conduce to the capture of the accurate time of damage occurrence. The method developed in this paper can help to build the system of online damage detection and health monitoring of composite material structures when they cannot be directly observed or measured.


Author(s):  
Behzad Ahmed Zai ◽  
MA Khan ◽  
Kamran A Khan ◽  
Asif Mansoor ◽  
Aqueel Shah ◽  
...  

This article presents a literature review of published methods for damage identification and prediction in mechanical structures. It discusses ways which can identify and predict structural damage from dynamic response parameters such as natural frequencies, mode shapes, and vibration amplitudes. There are many structural applications in which dynamic loads are coupled with thermal loads. Hence, a review on those methods, which have discussed structural damage under coupled loads, is also presented. Structural health monitoring with other techniques such as elastic wave propagation, wavelet transform, modal parameter, and artificial intelligence are also discussed. The published research is critically analyzed and the role of dynamic response parameters in structural health monitoring is discussed. The conclusion highlights the research gaps and future research direction.


2013 ◽  
Vol 639-640 ◽  
pp. 1033-1037
Author(s):  
Yong Mei Li ◽  
Bing Zhou ◽  
Guo Fu Sun ◽  
Bo Yan Yang

The research to identify and locate the damage to the engineering structure mainly aimed at some simple structure forms before, such as beam and framework. Damage shows changes of local characteristics of the signal, while wavelet analysis can reflect local damage traits of the signal in time domain and frequency domain. For confirming the validity and applicability of structural damage identification methods, wavelet analysis is used to spatial structural damage detection. The wavelet analysis technique provides new ideas and methods of spatial steel structural damage detection. Based on the theory of wavelet singularity detection,with the injury signal of modal strain energy as structural damage index,the mixing of the modal strain energy and wavelet method to identify and locate the damage to the spatial structure is considered. The multiplicity of the bars and nodes can be taken into account, and take the destructive and nondestructive modal strain energy of Kiewitt-type reticulated shell with 40m span as an example of numerical simulation,the original damage signal and the damage signal after wavelet transformation is compared. The location of the declining stiffness identified by the maximum of wavelet coefficients,analyzed as signal by db1 wavelet,and calculate the graph relation between coefficients of the wavelets and the damage to the structure by discrete or continuous wavelet transform, and also check the accuracy degree of this method with every damage case. Finally,the conclusion is drawn that the modal strain energy and wavelet method to identify and locate the damage to the long span reticulated shell is practical, effective and accurate, that the present method as a reliable and practical way can be adopted to detect the single and several locations of damage in structures.


2016 ◽  
Vol 16 (6) ◽  
pp. 711-731 ◽  
Author(s):  
Yun-Lai Zhou ◽  
Nuno M.M. Maia ◽  
Rui P.C. Sampaio ◽  
Magd Abdel Wahab

Maintenance and repairing in actual engineering for long-term used structures, such as pipelines and bridges, make structural damage detection indispensable, as an unanticipated damage may give rise to a disaster, leading to huge economic loss. A new approach for detecting structural damage using transmissibility together with hierarchical clustering and similarity analysis is proposed in this study. Transmissibility is derived from the structural dynamic responses characterizing the structural state. First, for damage detection analysis, hierarchical clustering analysis is adopted to discriminate the damaged scenarios from an unsupervised perspective, taking transmissibility as feature for discriminating damaged patterns from undamaged ones. This is unlike directly predicting the structural damage from the indicators manifestation, as sometimes this can be vague due to the small difference between damaged scenarios and the intact baseline. For comparison reasons, cosine similarity measure and distance measure are also adopted to draw out sensitive indicators, and correspondingly, these indicators will manifest in recognizing damaged patterns from the intact baseline. Finally, for verification purposes, simulated results on a 10-floor structure and experimental tests on a free-free beam are undertaken to check the suitability of the raised approach. The results of both studies are indicative of a good performance in detecting damage that might suggest potential application in actual engineering real life.


Sign in / Sign up

Export Citation Format

Share Document