Evaluation of Fundamental UHPC Properties According to the Shape of Steel Fiber

2010 ◽  
Vol 452-453 ◽  
pp. 717-720 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Kyung Taek Koh ◽  
Sung Wook Kim

This paper intends to examine the effects if the length and shape of steel fibers on the mechanical characteristics of ultra-high performance concrete (UHPC). Accordingly, the length (l) of the steel fibers with diameter (d) of 0.2 mm is varied as 13 mm, 16.3 mm and 19.5 mm and their corresponding aspect ratios (l/d) are 65, 82 and 98. Straight and wave-shaped fibers are adopted to manufacture UHPC. Thereafter, the effects of the aspect ratio and characteristics of the wave-shape of the steel fibers on the strength characteristics of UHPC are examined through compressive and flexural strength tests. The results showed small differences in the workability and compressive behavior but revealed that changing the length of the fibers and increasing the aspect ratio are improving the flexural behavior of UHPC. Specifically, the flexural strength was enhanced by 25% and the flexural toughness by 30%. Compared to rectilinear fibers, the adoption of wave-shaped fibers is seen to degrade the flexural behavior regardless of the aspect ratio. Consequently, using straight steel fibers and adopting larger aspect ratio seems advisable to improve the toughness of UHPC.

2011 ◽  
Vol 287-290 ◽  
pp. 453-457 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Kyung Taek Koh ◽  
Sung Wook Kim

This intends to examine the flexural behavioral characteristics of hybrid UHPC using a mix of steel fibers with different lengths. Three types of fibers are adopted with fixed diameter of 0.2 mm and lengths of 13, 16.3 and 19.5 mm (aspect ratio of 65, 82 and 98, respectively). Comparative analysis of the flexural strength, load bearing capacity, deflection and toughness is performed adopting a mix use of these 3 types of steel fibers with ratio of 2% and 1.5%. The results show that the hybrid use of steel fibers improves significantly the flexural strength and flexural toughness compared to the use of a single type of fiber. When steel fibers with lengths of 16.3 mm and 19.5mm are admixed at a rate of 1% each, UHPC develops a flexural strength larger by 27% (maximum 50%) than conventional UHPC admixed with 2% of steel fiber with length of 13 mm. Moreover, flexural strength similar to that of conventional UHPC is secured when steel fibers with lengths of 16.3 mm and 19.5mm are admixed at respective rates of 0.5% and 1% (total rate of 1.5%).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nasser Hakeem Tu’ma ◽  
Mohammed Naji Hammood ◽  
Rasool Dakhil Mohsin

Abstract The hollow structural elements occupy a great deal of researchers’ interest due to the possibility of losing their weights and maintaining or developing their resistances especially when increasing both compressive and tensile strength of modern materials. The flexural strength based on the forces balance and stain compatibility was derived. Nine beams of Ultra High Performance concrete (UHPC) and conventional reinforced steel bars were casted. Several parameters were taken which are the thickness of the concrete top flange, thickness of the concrete bottom flange, depth of the longitudinal hollow and the ratio of the longitudinal reinforcing steel. By comp aring the practical and theoretical results, the proposed flexural strength provided a safety factor of one-fifth against the experimental collected data. The ultimate flexural force developed up 260 % when increasing the reinforced steel area 4.6 times and 230 % comparing with the solid beam. Many aspect ratios were also mentioned that keep the strength in developing.


Sign in / Sign up

Export Citation Format

Share Document