Prediction Method of Main Parameters in Internal Mixer Based on Chaotic Neural Network

2012 ◽  
Vol 501 ◽  
pp. 398-401
Author(s):  
Su Zhen Huang ◽  
Chuan Sheng Wang

The chaotic mixing prediction model was established based on RBF neural network and the chaotic mixing process of internal mixing. Training process indicates the method has powerful approaching ability, classing ability and convergence. Actual experiment results verified validity and veracity of this method.

2013 ◽  
Vol 12 (12) ◽  
pp. 2292-2299 ◽  
Author(s):  
Zhe-min LI ◽  
Li-guo CUI ◽  
Shi-wei XU ◽  
Ling-yun WENG ◽  
Xiao-xia DONG ◽  
...  

2013 ◽  
Vol 805-806 ◽  
pp. 1421-1424
Author(s):  
Xue Feng ◽  
Wuyunbilige Bao ◽  
Ben Ha

Choose factors which influence the energy demand by the method of path analysis, build radial basis function (RBF) neural network model to predict energy demand in China. The RBF neural network is trained with the actual data of the main factors affecting energy demand during 1989-2003 and energy demand during 1993-2007 as learning sample with a good fitting effect. After testing network with the actual data of the main factors affecting energy demand during 2004-2007 and energy demand during 2008-2011, higher prediction accuracy can be obtained. By comparison with the BP network, RBF network prediction model outperforms BP network prediction model, finally RBF network is applied to make prediction of energy consumption for the year 2013-2015.


2012 ◽  
Vol 182-183 ◽  
pp. 1358-1361
Author(s):  
Le Xiao ◽  
Min Peng Hu

According to the fact that the use of electricity in grain depot is nonlinear time series, the article introduces the prediction model of electricity based on Radial Basis Function Neural Network, and conducts the modeling and prediction by adopting the historical electricity consumption of a typical grain depot. As the result of simulation shows, the model obtains better forecasting results in grain depot electricity.


2020 ◽  
Vol 10 (7) ◽  
pp. 2476 ◽  
Author(s):  
Fu-Qing Cui ◽  
Zhi-Yun Liu ◽  
Jian-Bing Chen ◽  
Yuan-Hong Dong ◽  
Long Jin ◽  
...  

Soil thermal conductivity is a dominant parameter of an unsteady heat-transfer process, which further influences the stability and sustainability of engineering applications in permafrost regions. In this work, a laboratory test for massive specimens is performed to reveal the distribution characteristics and the parameter-influencing mechanisms of soil thermal conductivity along the Qinghai–Tibet Engineering Corridor (QTEC). Based on the measurement data of 638 unfrozen and 860 frozen soil specimens, binary fitting, radial basis function (RBF) neural network and ternary fitting (for frozen soils) prediction models of soil thermal conductivity have been developed and compared. The results demonstrate that, (1) particle size and intrinsic heat-conducting capacity of the soil skeleton have a significant influence on the soil thermal conductivity, and the typical specimens in the QTEC can be classified as three clusters according to their thermal conductivity probability distribution and water-holding capacity; (2) dry density as well as water content sometimes does not have a strong positive correlation with thermal conductivity of natural soil samples, especially for multiple soil types and complex compositions; (3) both the RBF neural network method and ternary fitting method have favorable prediction accuracy and a wide application range. The maximum determination coefficient (R2) and quantitative proportion of relative error within ±10% ( P ± 10 % ) of each prediction model reaches up to 0.82, 0.88, 81.4% and 74.5%, respectively. Furthermore, because the ternary fitting method can only be used for frozen soils, the RBF neural network method is considered the optimal approach among all three prediction methods. This study can contribute to the construction and maintenance of engineering applications in permafrost regions.


2014 ◽  
Vol 953-954 ◽  
pp. 800-805 ◽  
Author(s):  
Meng Di Liang ◽  
Tie Zhou Wu

Concerning the prediction problems’accuracy of the state-of-charge(SOC) of the battery,this paper proposes a prediction method based on an improved genetic algorithm-radial basis function neural network for power battery charged state. The prediction method, based on intensity of information interaction and neural activity, adjusts the size of the neural network online and solves the problem that radial basis function neural network structure adjustment influences the accuracy of charged state prediction. The simulation results show that,compared with the method of radial basis function neural network based on genetic algorithm , the accuracy of charged state prediction is more stable and more precise.


2013 ◽  
Vol 706-708 ◽  
pp. 1805-1809
Author(s):  
Xiao Yan Gong ◽  
Jun Guo ◽  
He Xue ◽  
Dong Hui Yan ◽  
Zhe Wu

In order to predict accurately gas concentration and design ventilation scheme in driving ventilation process under different gas emission in coal mine, based on the analysis of various ventilation factors, the prediction model structure of gas concentration for driving ventilation was designed based on RBF and BP neural network in this paper. Then MATLAB software and the observation data obtained from the coal mine sites were used to compare and analyze the prediction errors of two models, and a RBF neural network model with higher prediction precision was obtained. After that, the prediction model was used for practical application research on the gas concentration of the heading face in concrete coal mines. The research shows that the settled prediction model can not only predict the gas concentration precisely of driving ventilation, but also provide a certain theory basis for different driving ventilation equipment layout and parameters configuration in the driving ventilation process of coal mines.


Sign in / Sign up

Export Citation Format

Share Document