chaotic mixing
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 26)

H-INDEX

41
(FIVE YEARS 2)

AIChE Journal ◽  
2022 ◽  
Author(s):  
Gregory A. Campbell ◽  
Ross Taylor ◽  
Mark D. Wetzel ◽  
Shaji Chempath ◽  
Sirisha Bomma ◽  
...  

Author(s):  
Hua Yang ◽  
Shi-Xiao Wei ◽  
Han Chen ◽  
Lang Chen ◽  
Chak-tong Au ◽  
...  

Owing to high mixing efficiency, microreactors are used to synthesize uniform BaSO4 nanoparticles, but application in industrial scale is limited due to poor throughput. In this work, a high-throughput passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare BaSO4 nanoparticles of high size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux-Dushman experiments indicate that almost complete mixing in molecular level could be achieved when total volumetric flow rate Qtotal was larger than 10 mL/min, and the prepared BaSO4 nanoparticles were with narrow particle size distribution (PSD). Through the adjustment of Qtotal and reactant concentrations, it is easy to control the average size. An average size of 26 nm with narrow PSD could be achieved at Qtotal = 160 mL/min.


2021 ◽  
Author(s):  
Uyen L. P. Nguyen ◽  
Phuoc Vo Tan ◽  
Lap Luat Nguyen ◽  
Bao Huynh Phuong Nguyen

Author(s):  
Gregory Campbell ◽  
Ross Taylor ◽  
Mark Wetzel ◽  
Sirisha Bomma ◽  
Shaji Chempath ◽  
...  

A recently published approach for modeling the cross flow in an extruder channel using a new solution to the biharmonic equation is utilized in a study of chaotic mixing in a free helix single screw extruder. This novel extruder was designed and constructed with the screw flight, also referred to as the helix, detached from the screw core. Each of the screw elements could be rotated independently to obtain chaotic motion in the screw channel. Using the new extruder, experimental evidence for the increased mixing of a dye, for both a Dirac and droplet input, with a chaotic flow field relative to the traditional residence time distribution is presented. These experimental results are compared using the new biharmonic equation-based model. Because of the ability to periodically rotate only the flight/helix, the chaotic mixing results are minimally confounded by the existence of Moffat eddies.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Onur Kalayci ◽  
Ihsan Pehlivan ◽  
Akif Akgul ◽  
Selcuk Coskun ◽  
Ersin Kurt

In this study, a new chaotic mixer based on the Delta robot was designed and produced which had been controlled with Arduino Uno card and MATLAB. First of all, chaotic mixing systems with different dynamic properties were chosen for the chaotic mixing process. Then, by solving the chaotic systems selected in the MATLAB with the Runge Kutta 45 (RK45) numerical solution algorithm, the results in the integer format were obtained. The obtained chaotic time-series results were transformed into 3-dimensional position information for the servomotors used in the mixer with the algorithm developed in MATLAB. The supervision was provided to ensure that the newly designed chaotic mixer was pacing chaotically in x, y, and z coordinates by transferring the chaotic position information to the Arduino Uno R3 card via USB 2.0. With the software developed in MATLAB, the performances of 7 diversified chaotic systems’ trajectories and circular motion trajectories were compared over the numerical simulation orbital distribution ratio (ODR). In the final stage, in a solid-liquid mixture type, at the selected constant mixing time, experimental studies were performed where homogeneity and orbital distribution ratio (ODR) parameters were compared by using 7 diversified chaotic systems. The designed and produced chaotic mixer can also be used in experimental studies of certain liquid-liquid mixture types. It is thought that this prototype presented in the article will serve the aim of developing new chaotic mixer systems and algorithms to derive more homogeneous mixtures in a shorter time.


2021 ◽  
Author(s):  
Hugo Sanquer ◽  
Joris Heyman ◽  
Tanguy Le Borgne ◽  
Khalil Hanna

<p>Solute transport in porous media plays a key role in a range of chemical and biological processes, including contaminant degradation, precipitation, dissolution and microbiological dynamics. Increasing evidences have shown that the conventional complete mixing assumption at the pore scale can lead to a strong overestimation of reaction rates. Recent 3D imaging experiments of mixing in porous media suggest that these pore scale chemical gradients may be sustained by chaotic mixing dynamics. However, the consequences of such chaotic mixing on reactive processes are unknown.</p><p>In this work, we use reactive transport experiments coupled to 3D imaging to investigate the impact of micro-scale chaotic flows on mixing-limited reactions in the fluid phase.  We use optical index matching and laser-induced fluorescence to characterize the pore scale distribution of reactive product concentration for a range of Peclet and Damkhöler numbers. We use these measurements to develop a reactive lamellar theory that quantifies the impact of pore scale chemical gradients induced by chaotic mixing on effective reaction rates. These results provide new perspectives for upscaling reactive transport processes in porous media.</p>


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kamal El Omari ◽  
Eliane Younes ◽  
Teodor Burghelea ◽  
Cathy Castelain ◽  
Yann Moguen ◽  
...  
Keyword(s):  

Nano Express ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 010015
Author(s):  
Mohamed Talaat ◽  
Xiuhua April Si ◽  
Hiroko Kitaoka ◽  
Jinxiang Xi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document