Effect of Dispersant on the Measurement of Particle Size Distribution of Titanium Dioxide

2012 ◽  
Vol 512-515 ◽  
pp. 261-264
Author(s):  
Li Shen ◽  
Jin Hu ◽  
Da Ping Wu

As anionic surfactant, a commercial salt of lauryl sodium sulfate was used. The effects of different amounts of dispersant on the measurement of particle size distribution between two titanium dioxide powders (anatase and rutile) in aqueous media were discussed. Diluted aqueous suspensions were characterized in terms of particle size distribution and zeta potential. The results demonstrate that the measurement of particle size distribution strongly depends on the amounts of dispersant. The amounts of dispersant have a significant effect on the behavior of the rutile-TiO2 particles. The particle size first decreases significantly with an increase in the amounts of dispersant and then lesser increases with a further increase in the amounts of dispersant. The tendency show significant differences between two particles.

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1175 ◽  
Author(s):  
Ji-Soo Hwang ◽  
Jin Yu ◽  
Hyoung-Mi Kim ◽  
Jae-Min Oh ◽  
Soo-Jin Choi

Titanium dioxide (TiO2) is one of the most extensively utilized food additives (E171) in the food industry. Along with nanotechnology development, the concern about the presence of nanostructured particles in E171 TiO2 and commercial food products is growing. In the present study, the physicochemical properties of commercially available E171 TiO2 particles, including particle size distribution, were investigated, followed by their cytotoxicity and intestinal transport evaluation. The fate determination and quantification of E171 TiO2 in commercial foods were carried out based on the analytical procedure developed using simulated foods. The results demonstrated that TiO2 is a material mainly composed of particles larger than 100 nm, but present as an agglomerated or aggregated particle in commercial foods with amounts of less than 1% (wt/wt). Titanium dioxide particles generated reactive oxygen species and inhibited long-term colony formation, but the cytotoxicity was not related to particle size distribution or particle type (food- or general-grade). All TiO2 particles were mainly transported by microfold (M) cells, but also by intestinal tight junction. These findings will be useful for TiO2 application in the food industry and predicting its potential toxicity.


2018 ◽  
Vol 20 (12) ◽  
pp. 8119-8132 ◽  
Author(s):  
Fabian Sieland ◽  
Jenny Schneider ◽  
Detlef W. Bahnemann

The effects of the particle size distribution on the charge carrier dynamics and the photocatalytic activity of mixed titanium dioxide (TiO2) powder samples were investigated in this work.


2006 ◽  
Vol 6 (1) ◽  
pp. 95-103 ◽  
Author(s):  
D.H. Kwak ◽  
S.J. Kim ◽  
H.J. Jung ◽  
C.H. Won ◽  
S.B. Kwon ◽  
...  

The raw water characteristics of a water treatment plant in Korea are mainly dependent on two major factors: the clay particles attributed to rainfall and blue-green algae in reservoirs. In this work, zeta potential and particle size distributions of clay and algae particles, which are the important parameters affecting their removal efficiency, were measured to investigate the behavior and removal characteristics of particles under various conditions. The results showed that the zeta potential of blue-green algae was more sensitive to treatment conditions than clay, and it fluctuated highly with coagulant dosage, suggesting that the control of zeta potential is important for effective removal of algae particles. On the other hand, the range of particle size distribution that remained from the preliminary sedimentation tank was generally smaller than for flotation. However, the zeta potential of the remaining particles was either close to the isoelectric point or positive, and the particles were not so hard to remove for that reason. In the final analysis, for simultaneous removal of clay and algae particles, a sufficient zeta potential difference must be formed not only for algae particles but also for small clay particles from the sedimentation tank in the dissolved air flotation process.


2010 ◽  
Vol 177 ◽  
pp. 22-24
Author(s):  
Zheng Min Li ◽  
Zhi Wei Chen ◽  
Min Tan ◽  
Ke Jing Xu ◽  
Bing Jiang

Nano-TiO2 coating film is one of the efficient photocatalysts. The particle size distribution of TiO2 has important influence on photocatalytic activity. A new method to determine the particle size distribution of TiO2 nano-film coated on ceramic was developed, by which the images of film acquired by Atom force microscope (AFM) were processed, and TiO2 particles contacted with others were separated and detected. The particle size distributions of two TiO2 nano-films were determined.


2012 ◽  
Vol 05 ◽  
pp. 559-567
Author(s):  
H. Abdizadeh ◽  
Y. Vahidshad ◽  
H. R. Baharvandi ◽  
M. Akbari Baseri

In the water-in-oil (W/O) microemulsions based on anionic (AOT) surfactants, the ω value (molar ratio of water to surfactant), precursor, and surfactant could remarkably affect the synthesis of CuO - ZrO 2 nanocomposite and the morphologies of the sol-gel products simultaneously. In this study, CuO - ZrO 2 nanoparticles are synthesized using microreactors made of surfactant/water/n-hexane microemulsions and discusses the effect of different microemulsion variables on the particle size and particle size distribution by water-to-surfactant molar ratio. The obtained powders are characterized by DTA, XRD, SEM, EDS, and TEM and their physical properties are compared. For AOT surfactant the particle size increased with increasing the water to surfactant molar ratio. The particles size of CuO - ZrO 2 nanocomposite in sample with anionic surfactant with molar ratio of 6 that calcined at 600°C is between 15-20 nm.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Pirkko Holtta ◽  
Mari Lahtinen ◽  
Martti Hakanen ◽  
Jukka Lehto ◽  
Piia Juhola

AbstractNon-cementitious grouts have been tested in Olkiluoto for the sealing of fractures with the small hydraulic apertures. A promising non-cementitious inorganic grout material for sealing the fractures with the apertures less than 0.05 mm is commercial colloidal silica called silica sol. The potential relevance of colloid-mediated radionuclide transport is highly dependent on their stability in different geochemical environments. The objective of this work was to follow stability of silica sol colloids in low salinity Allard and saline OLSO reference groundwater (pH 7–11) and in deionized milliQ water. Stability of silica sol colloids was followed by measuring particle size distribution, zeta potential, colloidal and reactive silica concentrations. The particle size distributions were determined applying the dynamic light scattering (DLS) method and zeta potential based on dynamic electrophoretic mobility. The colloidal silica concentration was calculated from DLS measurements applying a calibration using a standard series of silica sol. Dissolved reactive silica concentration was determined using the molybdate blue (MoO4) method.These results confirmed that the stability of silica colloids dependent significantly on groundwater salinity. In deionized water, particle size distribution and zeta potential was rather stable except the most diluted solution. In low salinity Allard, particle size distribution was rather constant and the mean particle diameter remained less than 100 nm. High negative zeta potential values indicated the existence of stable silica colloids. In saline OLSO, particle size distribution was wide from a nanometer scale to thousands of nanometers. The disappearance of large particles, decrease in colloidal particle concentration and zeta potential near zero suggest flocculation or coagulation. Under prevailing saline groundwater conditions in Olkiluoto silica colloids released from silica sol are expected to be instable but the possible influence of low salinity glacial melt water has to be considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Erika Bojnanska ◽  
Michal Kalina ◽  
Ladislav Parizek ◽  
Eva Bartonickova ◽  
Tomas Opravil ◽  
...  

The purpose of this study was to specify critical parameters (physicochemical characteristics) of drug substance that can affect dissolution profile/dissolution rate of the final drug product manufactured by validated procedure from various batches of the same drug substance received from different suppliers. The target was to design a sufficiently robust drug substance specification allowing to obtain a satisfactory drug product. For this reason, five batches of the drug substance and five samples of the final peroral drug products were analysed with the use of solid state analysis methods on the bulk level. Besides polymorphism, particle size distribution, surface area, zeta potential, and water content were identified as important parameters, and the zeta potential and the particle size distribution of the drug substance seem to be critical quality attributes affecting the dissolution rate of the drug substance released from the final peroral drug formulation.


Sign in / Sign up

Export Citation Format

Share Document