Seismic Response Analysis of Railway Frame Piers

2012 ◽  
Vol 517 ◽  
pp. 824-831
Author(s):  
Yun Xiao ◽  
Jun Qing Lei ◽  
Zhong San Li

By response spectrum method, superposition method based elastic time-history analysis and nonlinear time-history analysis of Newmark-β based linear increasing acceleration method, the finite element models of frame piers 21#~29# of the Ziya River Bridge on Tianjin to Baoding railway are established, and an assistant program code is generated to analyze seismic response of the frame pier. Results indicate that the vibration modes of frame piers are scattered. Only a few modes would be aroused in a narrow band spectrum. And the seismic response obtained by the response spectrum method is generally 10%~20% smaller than which obtained by the elastic time-history analysis. Under seismic excitations along the longitudinal direction, the ratio of displacement difference between two columns to the maximum value is generally liner increased with the increasing of the girder deviation from the centre of the pier beam. And the plastic hinge yielding would occur both at the bottom and the top of pier columns under excitations of the transversal direction. As a result, taking more than 30 vibration modes into account is suggested in a seismic response analysis or design calculation for frame piers. A time-history analysis is recommended as well. The evaluation of earthquake resistant capability of the transversal direction should consider both the bottom and top of the columns, and the anti-seismic capability design of the longitudinal direction is one of the key points for frame piers in the ductility design.

2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


2017 ◽  
Author(s):  
George Wang ◽  
Michelle Loh ◽  
Yen-Tun Peng ◽  
Joanne Shen ◽  
P. E. Genesis ◽  
...  

2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


2020 ◽  
Vol 86 (888) ◽  
pp. 20-00129-20-00129
Author(s):  
Yoshihiro TAKAYAMA ◽  
Ayaka YOSHIDA ◽  
Nobuyoshi IRIKI ◽  
Eiichi MAEDA

Author(s):  
Yoshihiro Takayama ◽  
Ayaka Yoshida ◽  
Iriki Nobuyoshi ◽  
Eiichi Maeda

Abstract The independent support motion response spectrum method (ISM) is currently used for seismic analysis to calculate the response of multiply supported piping with independent inputs of support excitations. This approach may derive considerable overestimation in the combination of group responses under the absolute sum rule of NUREG-1061 [1]. Then authors have developed an advanced method of the ISM approach named SATH (Spectrum Method Assisted by Time History Analysis). In the SATH method, both of floor response spectra and time histories of floor acceleration are used as independent inputs of support excitations. The group responses are summed with correlation coefficients which are calculated by considering each time history of modal response by independent inputs of support excitations. In this paper, the necessity of taking the effects of correlation coefficients for the group responses into account in the ISM approach is examined. The SATH method has advantage to derive a more realistic sum rule of the group responses and applicability for the actual design.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qizhu Yang ◽  
Kejian Ma ◽  
Huagang Zhang ◽  
Yanhui Wei ◽  
Ze Xiang

PurposeThe purpose of this paper is to study the dynamic characteristics and seismic performance of the composite open-web grid floor structure.Design/methodology/approachStudied by using mode-superposition response spectrum method and time history analysis method.FindingsThe results show that the vertical mode-superposition response spectrum method is close to the time history analysis method. The floor has strong seismic performance, and the deflection and internal force are not large under vertical seism. The vertical seismic action suggested that 10% of the representative value of gravity load should be used to ensure the safety of the structure.Originality/valueIn the design, the mid-span section should be properly strengthened or the variable section design should be adopted.


Sign in / Sign up

Export Citation Format

Share Document