Floor Response Spectrum Method of Multiply Supported Piping System Assisted by Time History Analysis

Author(s):  
Yoshihiro Takayama ◽  
Ayaka Yoshida ◽  
Iriki Nobuyoshi ◽  
Eiichi Maeda

Abstract The independent support motion response spectrum method (ISM) is currently used for seismic analysis to calculate the response of multiply supported piping with independent inputs of support excitations. This approach may derive considerable overestimation in the combination of group responses under the absolute sum rule of NUREG-1061 [1]. Then authors have developed an advanced method of the ISM approach named SATH (Spectrum Method Assisted by Time History Analysis). In the SATH method, both of floor response spectra and time histories of floor acceleration are used as independent inputs of support excitations. The group responses are summed with correlation coefficients which are calculated by considering each time history of modal response by independent inputs of support excitations. In this paper, the necessity of taking the effects of correlation coefficients for the group responses into account in the ISM approach is examined. The SATH method has advantage to derive a more realistic sum rule of the group responses and applicability for the actual design.


2020 ◽  
Vol 86 (888) ◽  
pp. 20-00129-20-00129
Author(s):  
Yoshihiro TAKAYAMA ◽  
Ayaka YOSHIDA ◽  
Nobuyoshi IRIKI ◽  
Eiichi MAEDA




Author(s):  
Ayaka Yoshida ◽  
Yoshihiro Takayama ◽  
Hiromichi Shudo

Abstract The independent support motion response spectrum method (ISM) is currently used for seismic analysis to calculate the response of multiply supported piping system with independent inputs of support excitations. This approach may derive considerable overestimation in the combination of group responses under the absolute sum rule of NUREG-1061. To reduce the excessive overestimation, an advanced method named “Spectrum Method Assisted by Time History Analysis (SATH)” has been proposed. In the SATH method, modal responses by multiple excitations are combined with correlation coefficients which are calculated from the covariances and the standard deviations of time history responses of the oscillators having each of modal frequencies of piping system by each of the floor acceleration time history excitations. In this paper, the applicability of the SATH method to actual design which uses broadened Floor Response Spectra (FRS) was examined. Conservativeness of the SATH method is also discussed with presenting that responses derived from the SATH method tend to exceed responses by the time history analysis even when many different time intervals of acceleration time histories are used within the range of the FRS broadening.



2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qizhu Yang ◽  
Kejian Ma ◽  
Huagang Zhang ◽  
Yanhui Wei ◽  
Ze Xiang

PurposeThe purpose of this paper is to study the dynamic characteristics and seismic performance of the composite open-web grid floor structure.Design/methodology/approachStudied by using mode-superposition response spectrum method and time history analysis method.FindingsThe results show that the vertical mode-superposition response spectrum method is close to the time history analysis method. The floor has strong seismic performance, and the deflection and internal force are not large under vertical seism. The vertical seismic action suggested that 10% of the representative value of gravity load should be used to ensure the safety of the structure.Originality/valueIn the design, the mid-span section should be properly strengthened or the variable section design should be adopted.



2018 ◽  
Vol 175 ◽  
pp. 04037
Author(s):  
FENG Yongbing

Taking the three-span pre-stressed concrete continuous rigid frame bridge as an engineering example, MIDAS Civil was utilized to establish a spatial finite element model and the interaction between pile foundation and the soil was simulated by equivalent soil spring. In addition to analyzing shearing force, bending moment and stress of the primary beam's characteristic section under different loads, a response spectrum method and time history analysis were adopted to conduct seismic response analysis respectively. In this case, performance of the bridge could be comprehensively evaluated. Relevant analysis results indicate that internal force of the large-span pre-stressed concrete continuous rigid frame bridge is mainly induced by gravity and pre-stress of the structure; section stresses of the primary beam satisfy the corresponding specification and structural safety can be achieved in a state of operation. Moreover, computed results obtained by the response spectrum method is more conservative than those of the time history analysis. In terms of continuous rigid frame bridge, different seismic directions should be taken into consideration during structural seismic analysis at different construction stages.



2019 ◽  
Vol 267 ◽  
pp. 04014
Author(s):  
Danling Wang

As a kind of destructive natural disasters, earthquake can cause serious damage to the bridges of lifeline projects, which will bring great difficulties to the rescue and relief work. The bridge structure is complex, and people pay increasingly more attention to the research on its seismic resistance. It is very important for designers and researchers to adopt an appropriate analysis method in seismic resistance analysis. This paper briefly summarizes the hazards caused by earthquakes to long-span bridges, and introduces the calculation principles of response spectrum method and time history analysis in detail. Through the comparative study of the two commonly used seismic resistance analysis methods for bridges, it summarizes the advantages and disadvantages and the application scope of each method, providing reference for selecting suitable design methods for seismic resistance design. Lastly, it describes the future research trends of response spectrum method and time history analysis.



2005 ◽  
Vol 128 (3) ◽  
pp. 364-369 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy ◽  
K. K. Vaze ◽  
K. Muthumani

Passive energy dissipating devices, such as elastoplastic dampers (EPDs) can be used for eliminating snubbers and reducing the response of piping systems subjected to seismic loads. Cantilever and three-dimensional piping systems were tested with and without EPD on shaker table. Using a finite element model of the piping systems, linear and nonlinear time-history analysis is carried out using Newmark’s time integration technique. Equivalent linearization technique, such as Caughey method, is used to evaluate the equivalent damping of the piping systems supported on elastoplastic damper. An iterative response spectrum method is used for evaluating response of the piping system using this equivalent damping. The analytical maximum response displacement obtained at the elastoplastic damper support for the two piping systems is compared with experimental values and time history analysis values. It has been concluded that the iterative response spectrum technique using Caughey equivalent damping is simple and results in reasonably acceptable response of the piping systems supported on EPD.



Author(s):  
Nima Zobeiry

It is understood that the level of seismic damping in a piping system is strongly influenced by the supports. Put differently, the supports contribute to an effective damping that can be considered in the seismic analysis of the piping system. This paper investigates the issue for the feeder pipes of a CANDU™ reactor. Feeders are numerous class I pipes in parallel, which are separated by frictional spacer elements. The results of a time history analysis, taking into account different damping mechanisms, are compared to those from a response spectrum analysis to deduce the effective damping in the system. The sensitivity of the effective damping to different parameters, such as the coefficient of friction and the input frequency content, is investigated.



2004 ◽  
Vol 126 (1) ◽  
pp. 75-84 ◽  
Author(s):  
J. Xu ◽  
G. DeGrassi ◽  
N. Chokshi

Under the auspices of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with non-classical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were developed and analyzed by BNL for a suite of earthquakes. The BNL analysis was carried out by the Wilson-θ time domain integration method with the system-damping matrix computed using a synthesis formulation as presented in a companion paper [Xu, J., 2003, Nuclear Eng. Des. These benchmark problems were subsequently distributed to and analyzed by program participants applying their uniquely developed methods and computer programs. This paper presents the insights gleaned from the participants’ analyses, and the comparison of their results to the BNL time history solutions. The participant’s results established using complex modal time history methods showed close agreement with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced relatively conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is performed aiming at evaluating the applicability and sensitivity of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program are useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.



2013 ◽  
Vol 353-356 ◽  
pp. 2228-2232
Author(s):  
Xu Li ◽  
Sheng Ping Wu ◽  
Zhen Zheng Fang

The response of the long-span cable-stayed bridges under seismic load is complex. Reasonable methods is very important to analyze the seismic performance. In this paper, a practical project is taken as research background which is double pylon cable-stayed bridge with main span of 416m. Two artificial seismic waves and two seismic records were selected to analyze the seismic behaviors by the response spectrum method, time history analysis method and power spectrum method. The result shows that seismic responses of the girder and main tower are basically identical under the effect of artificial seismic wave. The response spectrum analysis results of them are between the other two methods under the effect of the natural seismic wave. For stay cable, time history analysis results has great difference compared with results of other two methods. Therefore, different methods should be choosed base on specific circumstances to analyse the earthquake response of this structure.



Sign in / Sign up

Export Citation Format

Share Document