Volume 9: Seismic Engineering
Latest Publications


TOTAL DOCUMENTS

24
(FIVE YEARS 24)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791883891

Author(s):  
Ryuya Shimazu ◽  
Ichiro Tamura ◽  
Shinichi Matsuura ◽  
Michiya Sakai ◽  
Yohei Ono

Abstract Loads applied to structures by means of vibration can be classified into load-controlled and displacement-controlled loads. The realistic elastic-plastic behavior of structures subjected to seismic loads is not fully understood, and the classification of the load applied to structures by means of earthquakes is unclear. The failure mode differs depending on the load classification, and thus clarifying the classification of the load applied to the structure is useful for designing the structure. This study clarified the realistic load classification of structures under an elastic-plastic response. Vibration tests were conducted using sinusoidal waves as inputs, and the elastic-plastic behavior of the piping supports undergoing buckling or fatigue failure was obtained. The maximum restoring force and the maximum deformation relationship were obtained from the envelope of the time history data of the test results. In addition, it was shown that the classification of the load could be determined from the maximum force-deformation diagram, even in cases involving buckling and fatigue. In the maximum force-deformation diagram, when the change in the ratio of dynamic restoring force to static restoring force is small, a load-controlled load is applied to the structure because the restoring force of the structure follows the change in the input wave. By contrast, when the change in the ratio of dynamic response displacement to static displacement is small, a displacement-controlled load is applied to the structure because the response displacement of the structure follows the change in the input wave.


Author(s):  
Hideyuki Morita ◽  
Tomoshige Takata ◽  
Hideki Madokoro ◽  
Hiromi Sago ◽  
Shinobu Yokoi ◽  
...  

Abstract When cylindrical tanks installed in the ground, such as oil tanks and liquid storage tanks, receive strong seismic waves, including the long-period component, motion of the free liquid surface inside the tank called sloshing may occur. If high-amplitude sloshing occurs and the waves collide with the tank roof, it may lead to accidents such as damage of the tank roof or outflow of internal liquid of the Tank. Therefore, it is important to predict the wave height of sloshing generated by earthquake motions. Sloshing is a type of vibration of free liquid surface, and if the sloshing wave height is small, it can be approximated with a linear vibration model. In this case, the velocity-response-spectrum method using velocity potential can estimate the sloshing wave height under earthquake motions. However, if the sloshing wave height increases, the sloshing becomes nonlinear, and necessary to evaluate the wave height using other methods such as numerical analysis. Design earthquake magnitude levels in Japan tend to increase in recent years, long-period components of earthquake wave which act on the sloshing wave height also increase instead of introducing seismic isolation mechanisms. To evaluate load acting on the internal components of cylindrical tanks by nonlinear sloshing, there are few applications which quantitatively evaluated the crest impact load of nonlinear sloshing. In order to evaluate the load acting on the internal components of cylindrical tanks, the range of applicability of the fluid flow analysis method which validated the analysis accuracy of impact load acting on the roof in a simple cylindrical tank in the past study (PVP2019-93442) is extended to cylindrical tanks with internal components.


Author(s):  
Atsuhiko Shintani ◽  
Takuma Yoshida ◽  
Chihiro Nakagawa ◽  
Tomohiro Ito

Abstract This paper deals with the motion of coupled cabinets containing electronics subjected to seismic input. In power plants, chemical plants, etc., several rectangular cabinets containing important electronics are always lined up in the control center. These electronics are necessary for the control of the entire plant; thus, when they are damaged, the entire plant cannot be controlled, and a serious accident may occur. These cabinets are frequently put directly on the floor. Thus, it is perceived that in the worst case, cabinets may turn over by rocking motion during earthquakes and electronics may break. Moreover, even when the cabinets do not overturn, there is a concern about a large acceleration applied to the internal electronics due to the seismic waves. Hence, the need to develop methods that can reduce rocking motion and prevent electronics damage simultaneously. First, we consider the single cabinet with electronics. The cabinet is modeled as a rotating rigid body around its corner. The internal electronics are modeled as a rigid body moving in the translational direction in the cabinet. This system is referred to as single system. We input a seismic wave to the single system and investigate the rocking angle of the cabinet and the acceleration of the electronics in the cabinet. Consequently, we consider the adjacent cabinets connected by an elasto-plastic damper containing electronics. The cabinets are modeled as rotating rigid bodies. The internal electronics are modeled as rigid bodies moving in the translational direction in the cabinets. The whole system is known as a connected system. The elasto-plastic damper has bilinear hysteretic characteristics and can absorb the energy of earthquake inputs. We input the same seismic wave to the connected system to obtain the rocking angle of cabinets and the acceleration of electronics in the connected system. In these simulations, it is assumed that cabinets do not collide with each other. Then, we investigate the effect of the parameters of the elasto-plastic damper suppressing the rocking angle of the cabinets and the acceleration of electronics. Finally, we compare the maximum rocking angle and the maximum acceleration of the single system with that of the connected system and consider an ideal method to reduce the rocking angle and the acceleration simultaneously.


Author(s):  
Shinichiro Matsubara ◽  
Akihisa Iwasaki ◽  
Hidenori Harada ◽  
Tomohiko Yamamoto

Abstract The fast reactor core is composed of hundreds of core elements that self-stand on the lower support plate, and core elements does not have support to constrain vertical displacement in order to avoid effects such as thermal elongation. When an earthquake occurs, the group vibration behavior including the rising of core elements in the vertical direction, the collision with adjacent core elements in the horizontal direction, and the fluid structure interaction is observed. The three dimensional core group vibration analysis code (REVIAN-3D) for evaluating these has been constructed. In this study, to grasp and estimate the group vibration behavior with and without a core former under the earthquake motion, seismic experiment of hexagonal multi bundle model using core element mock-up was conducted. These test results show that the presence of the core former decrease the horizontal displacements and increases core compaction. And the test results are used for the verification data of the analysis code REVIAN-3D.[1]


Author(s):  
Xuan Huang ◽  
Pingchuan Shen ◽  
Shuai Liu ◽  
Jian Liu ◽  
Xiaozhou Jiang ◽  
...  

Abstract High flux reactor is an important engineering test reactor, which can be used in irradiation research of materials, chemistry, isotopes, medicine and other fields. In the high flux reactor coolant system, there are a large number of nuclear pipes and the layout is complex. The optimization of seismic analysis method for reactor coolant system is an important part in the design process to ensure the nuclear pipes meet the design specifications. The traditional single point response spectrum method needs to envelope the response spectrum of different floors as the analysis input. This method is difficult to give the reasonable seismic load to the numerous nuclear pipes and it will increase the design cost and the difficulty of safety analysis about nuclear pipe. In this paper, an optimized seismic analysis method of reactor coolant system is proposed. By using the multi-point response spectrum method, the optimization of different excitation loading modes for different constrained support points is realized. The analysis results show that the multi-point response spectrum method can solve the problem that different support points are located at different elevation floors in the reactor coolant system, which makes the calculation results more accurate and reasonable. Compared with the traditional method, it can make the design more efficient and practical.


Author(s):  
Keisuke Minagawa ◽  
Fabrizio Paolacci

Abstract Seismic damage of chemical plant facilities (pressure vessels, piping, storage tanks, etc..) can causes human and economic losses as well as heavy environmental damages. Therefore, it is of paramount importance to reduce such a consequences. The passive control techniques (PCT) as dampers or base isolation can represent an effective technique to mitigate the major damage caused by earthquakes. Viscous dampers, tuned mass dampers and base isolators are well-known passive control devices successfully applied to civil structures, as demonstrated during the last big events as Northridge earthquake in 1994, the Kobe earthquake in 1995, the Great East Japan earthquake in 2011. The scarce application to major hazard industrial facilities as chemical plants poses some questions, including the selection of suitable devices, their real applicability and effectiveness, because of the strict requirements of chemical plant equipment in terms of safety and business continuity. Therefore, this study aim at analyzing the possible applications of the most renew passive control techniques for seismic protection for chemical plant components. In this respect, a complete review of typical seismic damage of industrial (chemical) facilities and the investigation of the applicability of PCT as mitigation strategy is offered for all possible structural typologies of units presents in a plant.


Author(s):  
Hideaki Itabashi ◽  
Yoshitaka Tsutsumi ◽  
Koji Nishino ◽  
Shin Kumagai

Abstract The functional requirements of Main Steam Isolation Valves (MSIVs) provided in the Boiling Water Reactor (BWR) nuclear power plants in Japan have been previously evaluated via seismic tests and so forth. However, since the response acceleration has increased in line with a recent reassessment of standard earthquake ground motions, it is necessary to evaluate seismic operability with respect to high acceleration. In addition, from the viewpoint of equipment fragility in seismic PRA, it is necessary to determine practical seismic operability limits. We used a resonant shaking table in the Central Research Institute of the Electric Power Industry (CRIEPI), which is capable of seismic tests at acceleration levels previously unachievable, and in seismic tests carried out on an MSIV, we obtained results confirming that validated seismic operability was possible even at response accelerations as high as 15 × 9.8 m/s2. The seismic operability results obtained for this MSIV will be applied to a fragility analysis of seismic PRA.


Author(s):  
Fumio Inada ◽  
Michiya Sakai ◽  
Ryo Morita ◽  
Ichiro Tamura

Abstract In a previous report, a new method of calculating the approximate seismic cumulative fatigue damage of plant pipelines was developed, in which the sum of the cumulative absolute velocities (CAV) of the pipeline response per cycle was calculated, and the result was applied to the allowable vibration velocity described in the ASME Operation and Maintenance (O/M) code 2012. The new method provided a conservative value of cumulative fatigue damage. In this present study, a parameter showing the effect of a concentrated mass attached to the tip of a cantilever pipe was obtained as a function of the ratio of the concentrated mass to the mass of the cantilever pipe by eigenmode calculation using ABAQUS. In the previous report, the new method was based on the relative response of the pipeline, whereas in this present study, the application of the method was expanded to evaluations using the CAV of the excitation input for each cycle. We conducted the fast forward simulation of a real earthquake to determine the effect of the peak frequency change on cumulative fatigue damage, and we found that the response of cumulative fatigue damage at the peak frequency tends to decrease with increasing peak excitation frequency, which was consistent with the results obtained using the previously reported new method. Both the new method and the newly expended method are based on the ASME O/M code, and the results obtained by these methods suggest that the peak frequency tends to affect general pipelines. In the calculations, when the configuration of the pipeline is fixed and the mode shape does not change, the cumulative fatigue damage was found to decrease with increasing peak frequency of input acceleration. If the mode shape changes with the peak input acceleration frequency, then cumulative fatigue damage is affected. Moreover, if the participation factor has a larger value in a higher mode, the cumulative fatigue damage also has a larger value.


Author(s):  
Yoshihiro Takayama ◽  
Ayaka Yoshida ◽  
Iriki Nobuyoshi ◽  
Eiichi Maeda

Abstract The independent support motion response spectrum method (ISM) is currently used for seismic analysis to calculate the response of multiply supported piping with independent inputs of support excitations. This approach may derive considerable overestimation in the combination of group responses under the absolute sum rule of NUREG-1061 [1]. Then authors have developed an advanced method of the ISM approach named SATH (Spectrum Method Assisted by Time History Analysis). In the SATH method, both of floor response spectra and time histories of floor acceleration are used as independent inputs of support excitations. The group responses are summed with correlation coefficients which are calculated by considering each time history of modal response by independent inputs of support excitations. In this paper, the necessity of taking the effects of correlation coefficients for the group responses into account in the ISM approach is examined. The SATH method has advantage to derive a more realistic sum rule of the group responses and applicability for the actual design.


Author(s):  
Akihisa Iwasaki ◽  
Shinichiro Matsubara ◽  
Hidenori Harada ◽  
Tomohiko Yamamoto

Abstract The fast reactor core is composed of hundreds of core elements that stand independently on the core support plate, but does not have support to constrain vertical displacement in order to avoid effects such as thermal elongation. When the earthquake occurs, the group vibration behavior is shown, including the rising of core elements in vertical direction, the collision with adjacent core elements in horizontal direction, and the fluid structure interaction. The three dimensional core group vibration analysis code (REVIAN-3D) was constructed to evaluate them. In the case of fast reactor cores in Japan, the horizontal displacement of core elements at the outermost periphery is restricted by the core former (core barrel). However, since there is no core former in fast reactors other than Japan and the boundary conditions are different from those in Japan, the vibration behavior also differs. In this study, to grasp and estimate the group vibration behavior with and without a core former under the earthquake motion, seismic experiment of hexagonal multi bundle model using core assembly mock-up was conducted [1]. These test results show that the horizontal displacements are larger and impact force between pads of core assembly mock-up is smaller without the core former. In this paper, the analysis was verified by group vibration tests with and without a core former.


Sign in / Sign up

Export Citation Format

Share Document