Quasi-Static Simulation of Crack Growth in Elastic Materials Considering Internal Boundaries and Interfaces

2012 ◽  
Vol 525-526 ◽  
pp. 181-184 ◽  
Author(s):  
P. Judt ◽  
Andreas Ricoeur

This work presents numerical methods used for predicting crack paths in technicalstructures based on the theory of linear elastic fracture mechanics. The FE-method is usedin combination with an efficient remeshing algorithm to simulate crack growth. A post pro-cessor providing loading parameters such as the J-integral and stress intensity factors (SIF) ispresented. Path-independent contour integrals are used to avoid special requirements concern-ing crack tip meshing and to enable efficient calculations for domains including interfaces andinternal boundaries. In particular, the interaction of cracks and internal boundaries and inter-faces is investigated. The simulation combines crack propagation within elastic bodies and atbi-material interfaces. The latter is based on a cohesive zone model. The presented numericalresults of crack paths are verified by experiments.

2014 ◽  
Vol 606 ◽  
pp. 209-212
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

This paper deals with the fracture behaviour of layered ceramic composite with residual stresses. The main goal is to investigate the effect of residual stresses and material interfaces on crack propagation by more complex 3D finite element models. The crack behaviour was described by analytical procedures based on linear elastic fracture mechanics (LEFM) and generalized LEFM. The influence of laminate composition with residual stresses on critical values for crack propagation through the laminate interfaces was also determined. Good agreement has been found to exist between numerical results and experimental data. The results obtained can be used for a design of new layered composites with improved resistance against crack propagation.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

A typical procedure for a remnant fatigue life (RFL) assessment is stated in the BS-7910 standard. The aforementioned standard provides two different methodologies for estimating RFL; these are: the S-N curve approach and the crack growth laws (i.e. using Linear Elastic Fracture Mechanics (LEFM) principles) approach. Due to its higher accuracy, the latter approach is more commonly used for RFL assessment in the offshore industry. Nevertheless, accurate prediction of RFL using the deterministic LEFM approach (stated in BS-7910) is a challenging task, as RFL prediction is afflicted with a high number of uncertainties. Furthermore, BS-7910 does not provide any recommendation in regard to handling the uncertainty in the deterministic RFL assessment process. The most common way of dealing with the aforementioned uncertainty is to employ Probabilistic Crack Growth (PCG) models for estimating the RFL. This manuscript explains the procedure for addressing the uncertainty in the RFL assessment of process piping with the help of a numerical example. The numerically obtained RFL estimate is used to demonstrate a calculation of inspection interval.


1999 ◽  
Author(s):  
T. Siegmund ◽  
W. Brocks ◽  
J. Heerens ◽  
G. Tempus ◽  
W. Zink

Abstract The present study reports on the application of a cohesive zone model to the analyses of crack growth in thin sheet specimen of a high strength aluminum alloy. In addition to the elastic-plastic material properties, the two parameters cohesive strength and cohesive energy describe material separation. For the sheet specimen under investigation the cohesive energy is determined via a numerical-experimental approach using tests on notched tensile specimens as well as a damage indicator. The cohesive energy is found to be close to the corresponding value of plane strain fracture toughness. The cohesive strength is approximately twice the yield strength. With these two additional material parameters being determined crack growth experiments in center crack panels are analyzed. Good agreement with experimental records is found. Finally the applicability of the model to study complex crack configurations as in multi-site damaged specimens is demonstrated.


2020 ◽  
Vol 110 ◽  
pp. 102804
Author(s):  
M. Mohajer ◽  
M. Bocciarelli ◽  
P. Colombi ◽  
A. Hosseini ◽  
A. Nussbaumer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document