layered ceramic
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
pp. 102543
Author(s):  
Jinxing Sun ◽  
Shixiang Yu ◽  
James Wade-Zhu ◽  
Xiaoteng Chen ◽  
Jon Binner ◽  
...  

2021 ◽  
pp. 113187
Author(s):  
Ao Yan ◽  
Xiaoting Yuan ◽  
Zhanmiao Li ◽  
Jikun Yang ◽  
Kailiang Ren ◽  
...  

2021 ◽  
Vol 7 (33) ◽  
pp. eabg2549
Author(s):  
Hemant J. Rathod ◽  
Thierry Ouisse ◽  
Miladin Radovic ◽  
Ankit Srivastava

Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing.


2021 ◽  
Vol 55 (2) ◽  
pp. 195-200
Author(s):  
Milan Ambrožič ◽  
Anatolij Nikonov

We study theoretically the biaxial bending of symmetric, flat layered ceramic composites (laminates) due to external loading. We focus on three-layered alumina/zirconia laminates. We compare the principal stresses in the samples in the case of static and harmonic dynamic loading. The dynamic equation within the Kirchhoff theory for thin homogeneous plates is first generalized to the case of multilayered plates. It is solved numerically with the relaxation method, which we have developed for this purpose.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 910
Author(s):  
Syed Rashid Habib ◽  
Salwa Bajunaid ◽  
Abdulrahman Almansour ◽  
Abdulkarim AbuHaimed ◽  
Muqrin Nasser Almuqrin ◽  
...  

The aim of the present study was to investigate the shear bond strength of five different repair methods and adhesive systems for zirconia (Zr) cores layered with feldspathic porcelain. Seventy-five Zr specimens (10 × 10 × 4 mm3) were prepared, sintered, layered with 2 × 10 × 10 mm3 of feldspathic porcelain, and fired. The ceramic was fractured, and the load recorded using a shear-bond test. Specimens were thermocycled and randomly divided into 5 groups (n = 15/group) based on the repair methods. Composite repair blocks with similar dimensions to the layered ceramic (2 × 10 × 10 mm3) were built according to each repair method. Shear bond strength testing of the specimens with composite built up was carried out using a universal testing machine (Instron®5960, Massachusetts, USA). The shear bond strengths of the adhesive interface between repaired composite and the Zr were recorded for all the test groups. The fractured specimens’ surfaces were examined under a scanning electron microscope (Jeol, Musashino, Akishima, Tokyo, Japan) for evaluation of the type of failure and surface characteristics. Shear bond strength of the veneered ceramic bonded to the Zr for all the test groups was non-significant (ANOVA, p = 0.062). Shear bond strength after the repair revealed significant differences (ANOVA, p = 0.002). Group-C (13.79 ± 1.32) and Group-D (9.77 ± 4.77) showed the highest and lowest shear bond strength values, respectively. Paired Sample T-tests showed significantly lower values (p = 0.000) for the repaired (composite) Zr compared to the layered (ceramic) Zr. Multiple comparisons revealed differences (significant) between the shear bond strength of Group-D with Groups A (p = 0.010) and C (p = 0.003, Post Hoc Tukey test). The repair methods tested showed variations in their respective shear bond strengths. Complete ceramic/zirconia repair systems showed better bonding between the repaired composite and Zr core. The mean shear bond strength for the repaired fractured layered Zr showed acceptable outcomes in terms of clinical perspective, but was, however, unpredictable.


Author(s):  
B.E. Goncharov ◽  
◽  
A.M. Sipatov ◽  
N.N. Cherkashneva ◽  
A.Yu. Pleskan ◽  
...  

The article covers the performance of thermal shock resistance experiments of a ceramic composite with two types of anti-oxidation coatings. A thermal shock burner rig was used to carry out the experiments similar to those expected in a combustor of a turbojet engine. SEM and х-ray diffraction analyses were used to examine the antioxidation coatings. It was deter-mined that the coating based on the refractory compounds possesses high thermal shock resistance when exposed to the fuel gas flow from a burner rig.


2020 ◽  
Vol 46 (17) ◽  
pp. 27903-27908
Author(s):  
V. Yu. Ulianitsky ◽  
A.A. Shtertser ◽  
I.S. Batraev ◽  
D.K. Rybin

Sign in / Sign up

Export Citation Format

Share Document