Synthesis and Properties of Composite Stabilized ZrO2

2013 ◽  
Vol 544 ◽  
pp. 68-71
Author(s):  
Jing Hui Cui ◽  
Tao Feng ◽  
Jin Feng Xia ◽  
Dan Yu Jiang ◽  
Ge Ming Liu ◽  
...  

Through Mechanical grounding method, CaZrO3 – 8YSZ(8% in mol yttria stabilized zirconia) electrolyte samples with different amounts of CaZrO3 at 10wt%, 20wt%, 30wt% were sintered at different temperatures in Muffle furnace. The decomposition temperature of CaZrO3 is 825°C-900°C under one atmosphere. At high temperature, CaZrO3 decomposes into CaO and ZrO2. So Y2O3-CaO-ZrO2 complex is composed. The effects of the sintering temperature and the contents of the CaZrO3 on the conductivity, porosity, flexure strength, hardness were investigated. XRD and SEM were used to analyse the compositions and microcosmic morphology.

2013 ◽  
Vol 591 ◽  
pp. 245-248 ◽  
Author(s):  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Tao Feng ◽  
Hai Fang Xu ◽  
Dan Yu Jiang

In some applications such as automotive oxygen sensor, 5mol% Y2O3stabilized zirconia (5YSZ) is generally used because it has both excellent ionic conductivity and mechanical properties. The automotive oxygen sensor would experience a cyclic change from high temperature (engine running) environment to the low temperature damp environment (in the tail pipe when vehicle stops). The conductivity change with coupled conditions of thermal cycle and dump environment in the 5mol%Y2O3ZrO2(5YSZ) system was examined by XRD,Impedance spectroscopy and transmission electron microscopy (SEM) in this paper.


1999 ◽  
Vol 575 ◽  
Author(s):  
R. N. Basu ◽  
C. A. Randall ◽  
M. J. Mayo

ABSTRACTElectrophoretic deposition (EPD) was explored as an inexpensive route for fabricating the 8mol% yttria stabilized zirconia electrolyte in solid oxide fuel cells (SOFCs). Normally, deposition of particulate ceramic powders onto a sintered porous surface yields a non uniform coating which, after sintering, results in porosity, surface roughness and cracking in the coating. To overcome this problem, the present study used a fugitive graphite interlayer between the porous air electrode supported (AES) cathode tube (doped-LaMnO3) and the deposited zirconia film. By this approach, a fairly dense green coating (˜ 60%) was obtained, which yielded a smooth surface and pore-free microstructure after sintering. Preliminary results on the effect of a fugitive interlayer on the unfired (green) and fired zirconia coatings are discussed.


Sign in / Sign up

Export Citation Format

Share Document