Numerical Simulation on Correcting Camber and Wedge of Steel Slabs in Hot Rolling Mill

2014 ◽  
Vol 626 ◽  
pp. 570-575 ◽  
Author(s):  
Jong Ning Aoh ◽  
Han Kai Hsu ◽  
Wei Ting Dai ◽  
Chun Yen Lin ◽  
Yen Liang Yeh

In the hot rolling process, the steel slab may experience a temperature gradient along its transverse direction which may cause camber and wedge after rolling. Camber and wedge phenomenon will affect the quality of the steel plate. To eliminate camber and wedge phenomenon, a pair of side guides is placed before and behind the hot rolling mill. The position mode and the force mode are the control modes for side guides to correct the slab shape and to guide the slab to follow rolling direction. Finite element analysis using ABAQUS was applied to simulate hot rolling process to find the correction mechanism of rolling equipment. The centerline of slab was traced and the shape of slab was predicted. The difference of rolling load between work side and drive side of roller was determined. Furthermore, the load, stress and velocity distribution on the slab at roll bite were analyzed. By using numerical model, hot rolling parameters including side guide control strategy can be predicted, which can provide the hot rolling line as a guideline to improve the quality of the steel slab.

2011 ◽  
Vol 696 ◽  
pp. 150-155 ◽  
Author(s):  
Akio Segawa

There is fear that the oxide scale formed in hot rolling causes adverse effects for surface properties of final product. In hot rolling, the sheet surface is occurred reoxidation after descaling. Therefore, the oxide scale is rolled together, and causes the surface defect. In this study, the method for reproducing the oxide scale in hot rolling is proposed by a vacuum hot rolling mill, named the scale transfer method, and focused on the deformation of the oxide scale itself. As the results, it’s possible to reproduce the oxide scale in the actual hot rolling process. It showed that causes the new surface defect for invading the oxide scale in the sheet surface during roll bite.


1999 ◽  
Author(s):  
James D. Lee ◽  
Majid T. Manzari ◽  
Yin-Lin Shen ◽  
Wenjun Zeng

Abstract The three-dimensional transient thermal problem of work rolls in the entire hot rolling process has been formulated. It includes the time-varying boundary conditions specified at the roll surface taking the schedule of both rolling and idling cycles into consideration. The corresponding finite element equations are derived and solved by the Runge-Kutta-Verner method. The finite element solutions indicate that the temperature variations in the circumferential direction are overwhelming. Case studies unveil the thermal characteristics of the work rolls in various kinds of mill operations. Numerical results are presented and compared with Guo’s analytical solutions.


2010 ◽  
Vol 165 ◽  
pp. 365-370
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Henryk Dyja

The main idea of multi slit rolling (MSR) technology is the capability of producing two, three, four and even five rods simultaneously from a single strip in a hot rolling process. Correct separation of the joined strips is one of the major problems in the MSR process. High tensile stresses (perpendicular to the rolling direction) are generated during movement of the band by the slitting rolls in the joining bridge. Critical value of the slitting criterion is mainly affected by geometry of the slitting rolls (angle, dimension and mass of the slitting rolls), temperature of the band and rolling speed. This paper presents results of numerical analysis of influence of the slitting roll angle on value of normalized Cockroft – Latham criterion during double slitting rolling process.


2012 ◽  
Vol 452-453 ◽  
pp. 200-205
Author(s):  
Jian Liang Sun ◽  
Hong Min Liu ◽  
Yan Peng ◽  
Gang Liu ◽  
Yan Liu

The heavy shell ring rolling mill which produces the large shell ring used in nuclear power, large-scale hydrogenation reactor and coal liquefaction reactor was taken as subject investigated. Because the size of shell ring is very large and the material of shell ring is special, the double drive rolls was taken in the shell ring rolling mill. Based on the elastic-plastic FEM and MARC software platform, the three dimensional thermal-mechanical coupled model of shell ring rolling process was built in this paper. First, the heat simulation text of the shell ring material has been carried out on the Gleeble-3500 thermal simulation test machine and the material properties were obtained. Then, considering the characteristics of heavy shell ring hot rolling mill with two drive rolls, the key problems such as geometry, material and thermo-boundary conditions were solved, the thermo-mechanical coupled finite element model of heavy shell ring hot rolling has been establised. At last, based on explicit dynamic FEM, the thermo-mechanical simulation of heavy shell ring rolling process was made. The stress field, strain field and temperature field were studied, the metal plastic deformation and its influence factors were investigated. The conclusions are agreement with the real rolling process. The conclusions are significant for designing equipments of shell ring rolling mill and developing new rolling schedule.


Author(s):  
Francisco J. Martinez Zambrano ◽  
Bethany Worl ◽  
Xiang Li ◽  
Armin K. Silaen ◽  
Nicholas Walla ◽  
...  

Abstract During the steelmaking and hot rolling processes, various defects and cracks appear throughout the steel product. These cracks may initiate and grow throughout the hot rolling process and result in a lower quality of the product than is acceptable. The most energy-intensive part of the hot rolling process is the reheating furnace, where slabs are heated up to a target rolling temperature largely through radiant heat transfer. In the reheat furnace, large stresses may develop due to the thermal gradients within the steel product. A thermal-stress analysis is proposed based on finite element method (FEM) to study the impacts of charging temperature, slab velocity, and heating rate on stress development as the steel slab travels through an industrial pusher-type reheat furnace. Furnace zone information is taken from a previously validated computational fluid dynamics (CFD) model and applied as thermal boundaries and constraints within the thermal-stress FEM models. Temperature and stress results were taken at the core, top, bottom, top quarter, and the bottom quarter of the steel slab at different residence times. Moreover, temperature lines and contour plots taken along the length of the slab allow visualization of the gradual development of temperature and identification of the locations corresponding to temperature variations as the slabs move in the furnace. The slab temperature predicted by the FEM model was found valid when compared with industrial data. Stress predictions found similar trends with previously published works as well as evidence of thermal shock in the sub-surface near the beginning of the residence time.


2013 ◽  
Vol 814 ◽  
pp. 1-6
Author(s):  
Olga Krivtsova ◽  
Alexandr Viventsev ◽  
Vitaly Talmazan ◽  
Dinislyam Musin ◽  
Alexandr Arbuz

The influence of used work rolls profiling on the quality of hot rolled metal was studied. The defect non-flatness is the main reason for hot rolled metal rejection to second grade at the continuous hot rolling mill 1700 of ArcelorMittal Temirtau JSC. The most optimal among studied profiling is concave profiling with average cumulative value ΣΔ=1.71mm. This is evidenced by the least volume of hot rolled metal, rejected to the second grade due to non-flatness.There were mathematical models developed, forecasting the volume of metal, rolled with the defect non-flatness with definite cumulative profiling of work rolls.


Sign in / Sign up

Export Citation Format

Share Document