A Three-Dimensional Boundary Element Approach for Transient Anisotropic Viscoelastic Problems

2016 ◽  
Vol 685 ◽  
pp. 267-271 ◽  
Author(s):  
Leonid Igumnov ◽  
I.P. Маrkov ◽  
A.V. Amenitsky

This paper presents a three-dimensional direct boundary element approach for solving transient problems of linear anisotropic elasticity and viscoelasticity. In order to take advantage of the correspondence principle between viscoelasticity and elasticity the formulation is given in the Laplace domain. Anisotropic viscoelastic fundamental solutions are obtained using the correspondence principle and anisotropic elastic Green’s functions. The standard linear solid model is used to represent the mechanical behavior of viscoelastic material. Solution in time domain is calculated via numerical inversion by modified Durbin’s method. Numerical example is provided to validate the proposed boundary element formulation.

2017 ◽  
Vol 743 ◽  
pp. 153-157 ◽  
Author(s):  
Leonid A. Igumnov ◽  
Ivan Markov

In this paper, the direct boundary element method in the Laplace domain is applied for the solution of three-dimensional transient dynamic problems of anisotropic elasticity in multi-connected domains. The formulation is based upon the integral representations of anisotropic dynamic fundamental solutions. As numerical example the problem of an anisotropic elastic prismatic solid with cubic cavity is investigated.


1994 ◽  
Vol 61 (3) ◽  
pp. 656-663 ◽  
Author(s):  
F. Guan ◽  
M. Novak

Three-dimensional transient response of both massless and massive multiple, rigid foundations, bonded to an elastic, homogeneous half-space, is investigated to study the effect of dynamic interaction through-soil. The numerical procedure is formulated in terms of the boundary element approach by means of the transient fundamental solutions developed by the authors (1994). This procedure works efficiently for the problem addressed here since the separated foundations are analyzed without discretizing the surface of the half-space outside the contact areas between the half-space and the foundations. It also provides the possibility to study nonlinear problems involved with semi-infinite soils.


Sign in / Sign up

Export Citation Format

Share Document