An Experimental Investigation of Cutting Forces in Micro End-Milling Process

2016 ◽  
Vol 693 ◽  
pp. 710-717
Author(s):  
Yan Jie Yuan ◽  
Xiu Bing Jing ◽  
Huai Zhong Li ◽  
Jun Wang

This paper presents an experimental study of cutting forces during micro end-milling of brass. The influences of cutting speed and feed per tooth on cutting forces have been researched. The results show that the resultant force Fr and feed force Fx significantly increase with increasing the feed per tooth. The resultant force Fr, feed force Fxand normal force Fy increase with increasing cutting speed. The specific shear energy is also investigated. It is observed that the specific shear energy increases greatly with decreasing the feed per tooth when the feed per tooth is less than minimum chip thickness.

Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2010 ◽  
Vol 102-104 ◽  
pp. 506-510 ◽  
Author(s):  
Ying Chun Liang ◽  
Kai Yang ◽  
Qing Shun Bai ◽  
W.Q. Chen

In this paper, the effect of minimum chip thickness on cutting temperature in micro-end- milling of aluminum alloy Al2024-T6 using a tungsten-carbide cutter are investigated and analyzed. The three-dimensional coupled thermal-mechanical finite element model is adopted to determine the effects of varying depth of cut on cutting temperature considering size effects. The simulation results show that the cutting temperature in micro-end-milling is lower than those occurring in conventional milling processes. When the depth of cut is approximately 40% of the cutting edge radius, there is no chip formation. The maximum temperature occurs at the contact region between micro cutting edge and workpiece, which shows an obvious size effect. The experimental verification of the simulation model is carried out on a micro-end-milling process of aluminum alloy 2024-T6 with a high precision infrared camera. The influence of various cutting depths on cutting temperature has been verified in experiments. The experimental measurements results are in a good agreement with the simulation results.


2004 ◽  
Vol 127 (3) ◽  
pp. 454-462 ◽  
Author(s):  
Liuqing Yang ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

This paper proposes an analytical approach to detect depth-of-cut variations based on the cutting-force shape characteristics in end milling. Cutting forces of a single-flute end mill are analyzed and classified into three types according to their shape characteristics. Cutting forces of a multiple-flute end mill are then classified by considering both the cutting types of the corresponding single-flute end mill and the degree of overlap of successive flutes in the cut. Force indices are extracted from the cutting forces and depth-of-cut variations are detected based on the changes of the force shape characteristics via the force indices in an end-milling process. The detection methodology is validated through cutting experiments.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


2012 ◽  
Vol 576 ◽  
pp. 99-102 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Surface roughness affects the functional attributes of finished parts. Therefore, predicting the finish surface is important to select the cutting levels in order to reach the required quality. In this research an experimental investigation was conducted to predict the surface roughness in the finish end milling process with higher cutting speed. Twenty sets of data for finish end milling on AISI H13 at hardness of 48 HRC have been collected based on five-level of Central Composite Design (CCD). All the experiments done by using indexable tool holder Sandvick Coromill R490 and the insert was PVD coated TiAlN carbide. The experimental work performed to predict four different roughness parameters; arithmetic mean roughness (Ra), total roughness (Rt), mean depth of roughness (Rz) and the root mean square (Rq).


Sign in / Sign up

Export Citation Format

Share Document