Brazing Inconel 600 Using the VZ-2150 Filler for Plate Heat Exchanger

2017 ◽  
Vol 732 ◽  
pp. 1-4 ◽  
Author(s):  
Cheng Ho Hsu ◽  
Ren Kae Shiue

The purpose of this investigation is focused on brazing Inconel 600 alloy using the nickel-based VZ-2150 filler foil for advanced plate heat exchanger application. Based on SEM microstructural observations and WDS chemical analysis results, both the amount and shape of precipitates in the brazed joint are changed with brazing parameters. With increasing the brazing temperature and/or time results in depletion of the boron from the joint into the grain boundary of base metal. The amount of boride in the joint is greatly decreased, and continuous grain boundary boride will dominate the entire brazed joint. However, the continuous grain boundary boride cannot be completely eliminated by increasing the brazing temperature and/or time.

2017 ◽  
Vol 735 ◽  
pp. 8-12
Author(s):  
Han Wei Lu ◽  
Shih Kai Chou ◽  
Ren Kae Shiue

The purpose of this investigation is concentrated on brazing Inconel 600 (IN-600) using pure Cu and Cu-6Sn (wt%) filler foils in order to replace the current plate heat exchanger made by austenitic stainless steel. Both Cu and Cu-6Sn brazed joints consist of interfacial chromium carbides in the Cu/Ni-rich matrix. The application of Cu-6Sn filler foil to braze IN-600 alloy demonstrates average shear strengths of above 300 MPa, which is much better than those of Cu brazed ones (217 ~ 290 MPa). Ductile dimple fracture is observed from all fractographs of Cu-6Sn brazed joints after shear tests. Because the brazing temperature of Cu-6Sn filler is lower than pure Cu, dissolution of IN-600 substrate into the brazed joint is significantly decreased. Isothermal solidification of Cu-6Sn brazed joint becomes less prominent than that of Cu brazed one. Better Cu-6Sn brazed joint is obtained due to less isothermal solidification defects in the joint. The Cu-6Sn filler foil shows great potential in brazing the IN-600 plate heat exchanger for industrial application.


2014 ◽  
Vol 936 ◽  
pp. 1620-1623 ◽  
Author(s):  
Wen Shiang Chen ◽  
Ren Kae Shiue

The purpose of this research is focused on developing a reliable plate heat exchanger made by Incoloy 800 (IN-800) alloy featured with high corrosion resistance in order to replace the current Cu brazed plate heat exchanger made by the 316 stainless steel. A Ni-based filler, MBF-51, was applied to braze the plate heat exchanger made by IN-800. According to the brazing optimizing experiments, the successful brazed joint was made by brazing at 1170 °C for 1800 s. Better shear strength is achieved from the specimen brazed at 1120 °C for 1800 s.


2013 ◽  
Vol 44 (8) ◽  
pp. 761-789 ◽  
Author(s):  
Farzaneh Hajabdollahi ◽  
Zahra Hajabdollahi ◽  
Hassan Hajabdollahi

2020 ◽  
Vol 8 (2) ◽  
pp. 117-133
Author(s):  
Fan Zhang ◽  
Weidong Zhou ◽  
Muhammad Zafar Ullah ◽  
Yongli Ma ◽  
Mingyan Liu

Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


Sign in / Sign up

Export Citation Format

Share Document