pure cu
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 97)

H-INDEX

25
(FIVE YEARS 6)

Alloys ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 3-14
Author(s):  
Mario Wolf ◽  
Jan Flormann ◽  
Timon Steinhoff ◽  
Gregory Gerstein ◽  
Florian Nürnberger ◽  
...  

A new approach for the development of thermoelectric materials, which focuses on a high-power factor instead of a large figure of merit zT, has drawn attention in recent years. In this context, the thermoelectric properties of Cu-Ni-based alloys with a very high electrical conductivity, a moderate Seebeck coefficient, and therefore a high power factor are presented as promising low-cost alternative materials for applications aiming to have a high electrical power output. The Cu-Ni-based alloys are prepared via an arc melting process of metallic nanopowders. The heavy elements tin and tungsten are chosen for alloying to further improve the power factor while simultaneously reducing the high thermal conductivity of the resulting metal alloy, which also has a positive effect on the zT value. Overall, the samples prepared with low amounts of Sn and W show an increase in the power factor and figure of merit zT compared to the pure Cu-Ni alloy. These results demonstrate the potential of these often overlooked metal alloys and the utilization of nanopowders for thermoelectric energy conversion.


2022 ◽  
Vol 24 (1) ◽  
pp. 186-200
Author(s):  
H. A. EL-Fattah ◽  
◽  
M.A. Metwally ◽  
M. M. Sadawy ◽  
I .G.El- Batanony ◽  
...  

The present investigation has examined the impact of micro-SiC on microstructure, dislocation and mechanical behavior of Cu/SiC composite. The micro-composite samples have been fabricated under a constant pressure (480 MPa) and sintered temperature (860oC) for 2 h. The sintering process was performed under argon gas. The microstructure examination was conducted using SEM/EDS and XRD diffraction. The SiC contents were 0, 5, 10,15,20,25 and 30 volume fraction. The outcomes showed that the density was significantly decreased with an increase of silicon carbide content. The relative densities of Cu and Cu/SiC composites was ranged from 91.24% to 83.56% for pure Cu and Cu/30 vol%SiC composites. The copper crystallite size was reduced with growing SiC content while the hardness, ultimate and yield compressive strength increased with increment of SiC volume fraction to 20% vol. The values of hardness, ultimate and yield compressive strength increased to 231 HV,343 and 176 N/mm2 , respectively for the composite sample containing 20% SiC particles with a percentage increase of 75%,26.6% and 57.2% compared with pure Cu.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nalin Somani ◽  
Y. K. Tyagi ◽  
Nitin Kumar Gupta

Purpose The purpose of this study is to investigate the effect of the sintering temperature on the microstructural, mechanical and physical properties of Cu-SiC composites. Design/methodology/approach The powder metallurgy route was used to fabricate the samples. Cold compaction of powders was conducted at 250 MPa which was followed by sintering at 850°C–950°C at the interval of 50 °C in the open atmospheric furnace. SiC was used as a reinforcement and the volumetric fraction of the SiC was varied as 10%, 15% and 20%. The processed samples were metallurgically characterized by the scanning electron microscope (SEM). Mechanical characterization was done using tensile and Vickers’ micro-hardness testing to check the hardness and strength of the samples. Archimedes principle and Four-point collinear probe method were used to measure the density and electrical resistivity of the samples. Findings SEM micrograph reveals the uniform dispersion of the SiC particles in the Cu matrix element. The results revealed that the Hardness and tensile strength were improved due to the addition of SiC and were maximum for the samples sintered at 950 °C. The addition of SiC has also increased the electrical resistivity of the Cu-SiC composite and was lowest for Cu 100% while the relative density has shown the reverse trend. Further, it was found that the maximum hardness of 91.67 Hv and ultimate tensile strength of 312.93 MPa were found for Cu-20% SiC composite and the lowest electrical resistivity of 2.017 µ- Ω-cm was found for pure Cu sample sintered at 950 °C, and this temperature was concluded as the optimum sintering temperature. Research limitations/implications The powder metallurgy route for the fabrication of the composites is a challenging task as the trapping of oxygen cannot be controlled during the compaction process as well as during the sintering process. So, a more intensive study is required to overcome these kinds of limitations. Originality/value As of the author’s best knowledge, no work has been reported on the effect of sintering temperature on the properties of the Cu-SiC composites which has huge potential in the industries.


Author(s):  
S Govindarajan ◽  
K Syamkumar ◽  
Ninad Lamture ◽  
Shirish S Kale ◽  
T Ram Prabhu

This paper explores the addition of h-BN and iron to Cu-based brake pads on the performance benefits. It also investigates the effect of graded layering by synthesizing three and four-layer brake pads by powder compaction and sintering route. The top one or two layers are made of Cu-based composite containing Fe, h-BN, and W, while the middle layer is pure Cu and, bottom steel plate. Two different compositions were explored for the composites by varying Fe content. From the two composite compositions, brake pads with single-layer composite or two-layer composite were synthesized. Characterization of brake pad specimens was carried out using density measurements, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy. The brake pads were subjected to simulated braking tests at braking energy/cycle of 60, 96, and 136 K Joules. Wear rate, coefficient of friction, stopping distance, stopping time, and hardness were measured and compared among other brake pads. The brake pad containing single-layer Fe rich Cu composite showed the best performance in the simulated braking tests. EDS analysis of wear debris shows the formation of iron (boride, nitride, oxide) complex which is indicative of a surface with superior dry lubricating properties. This surface is a result of synergetic interaction between h-BN and Fe particles. The iron particles which are scattered in the Cu matrix composite act as low friction regions on the brake pad surface that interrupt the high friction regions on the Cu matrix, thus reducing the local and bulk temperature rise. The two-layer composite brake-pad showed performance intermediate to the two single-layer brake pads. No advantage due to higher thermal conductivities in Fe deficient composite was observed as the two composite layers, showed similar Fe contents in their matrix phases.


Author(s):  
ZiDong Yin ◽  
Ming Yang

Excitation of the acoustic field leading to the Blaha effect affects the plasticity of the material significantly in ultrasonic vibration-assisted forming. In a micro-forming field, the effects are more significant in the deformation in surface of materials [1]-[3], in which reduction of the surface roughness based on the increasing of plastic deformation of surface asperity was effective [4]. On the other hand, the effect on deformation behavior of the bulk region indicted reduction in the yield stress of materials, and not only acoustic effect [5], but also impact effect is found to generate a large amount of dislocation and produce plastic deformation [6][7]. However, the effect on the bulk is more significant as that on the surface. Differences in the effect on the surface and the bulk are not clarified. In this study, the mechanism of the deformation in the surface of the material with ultrasonic vibration assistance is investigated and compared with that in the bulk. Forging tests using a newly developed ultrasonic vibrator were carried out on pure Cu foils with various process conditions. The longitudinal vibration frequency of the ultrasonic transducer is 60∓2kHz, and the vibration amplitude is in an adjustable range of 0~10μm. Forging test was carried out at different initial stress, specimen size and amplitude. The difference in acoustic softening and impact effects on the surface and the bulk was discussed.


Author(s):  
Gyander Ghangas ◽  
Vikas Goyat ◽  
Sachin Sirohi ◽  
Satish Kumar Sharma ◽  
Sunil Dhull

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7150
Author(s):  
Hongming Li ◽  
Shuang Zhang ◽  
Yajun Zhao ◽  
Xiaona Li ◽  
Fushi Jiang ◽  
...  

Reaching simultaneously high mechanical strength and low electrical resistivity is difficult as both properties are based on similar microstructural mechanisms. In our previous work, a new parameter, the tensile strength-over-electrical resistivity ratio, is proposed to evaluate the matching of the two properties in Cu alloys. A specific ratio of 310 × 108 MPa·Ω−1·m−1, independent of the alloy system and thermal history, is obtained from Cu-Ni-Mo alloys, which actually points to the lower limit of prevailing Cu alloys possessing high strength and low resistivity. The present paper explores the origin of this specific ratio by introducing the dual-phase mechanical model of composite materials, assuming that the precipitate particles are mechanically mixed in the Cu solid solution matrix. The strength and resistivity of an alloy are respectively in series and parallel connections to those of the matrix and the precipitate. After ideally matching the contributions from the matrix and the precipitate, the alloy should at least reach half of the resistivity of pure Cu, i.e., 50%IACS, which is the lower limit for industrially accepted highly conductive Cu alloys. Under this condition, the specific 310 ratio is related to the precipitate-over-matrix ratios for strength and resistivity, which are both two times those of pure Cu.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1883
Author(s):  
Peng Yang ◽  
Xingye Guo ◽  
Dingyong He ◽  
Zhen Tan ◽  
Wei Shao ◽  
...  

Pure Copper (Cu) is very difficult to prepare using selective laser melting (SLM) technology. This work successfully prepared the pure Cu with high relative density and high strength by the SLM technology using a surface oxidation treatment. The gas-atomized pure Cu powder was used as the feedstock in this work. Before the SLM process, the pure Cu powder was initially handled using the surface oxidation treatment to coat the powder with an extremely thin layer of Cu2O. The SLMed highly dense specimens contain α-Cu and nano-Cu2O phases. A relationship between the processing parameters (laser power (LP), scanning speed (SS), and hatch space (HS)) and density of Cu alloy in SLM was also investigated. The microstructure of SLMed Cu consists of fine grains with grain sizes ranging from 0.5 to ~30 μm. Tensile testing and detailed microstructural characterization were performed on specimens in the as-SLMed and pure copper state specimens. The mechanical property experiments showed that the specimens prepared by SLM technology containing nano-oxide phases had higher yield strength and tensile strength than that of other SLM-built pure copper. However, the elongation was remarkably decreased compared to other SLM-built pure copper, due to the fine grains and the nano-oxides.


2021 ◽  
Vol 412 ◽  
pp. 177-184
Author(s):  
Farid Kara ◽  
Fadhéla Otmane ◽  
Samir Bellal ◽  
Amira Djenet Guerfi ◽  
S. Triaa

An electromagnetic interferences (EMI) shielding is a material that attenuates radiated electromagnetic energy. Polymer nanocomposites is a class of materials that combine electrical, thermal, dielectric, magnetic and/ or mechanical properties, which are useful for the suppression of electromagnetic interferences. In this work, we looked over the effectiveness of the electromagnetic interferences shielding of polymer-based nanocomposites. These are thin samples of epoxy resin strengthened with nanostructured Cu powders. Nanostructured Cu powders were obtained by mechanical milling using the high-energy RETSCH PM400 ball mill (200 rpm). A powder sampling was conducted after 3h, 6h, 12h, 24h, 33h, 46h and 58h milling for characterization requirements. XRD analysis via the Williamson-Hall method shows that the mean crystallites size decreases from 151.6 nm (pure Cu phase) to 13.8 nm (58 h milling). Simultaneously, the lattice strain increases from 0.1% (pure Cu phase) to 0.59% (58 h milling). The elaboration of thin samples was performed by mixing a vol./3 fractions of nanostructured Cu powder, epoxy resin and hardener. Thin slabs of 1 mm thickness were moulded for use in a rectangular wave-guide. The EMI shielding experimental involved a two ports S parameters cell measurement made of R120 metallic wave-guides of rectangular section (19.05x9.525 mm2) and operational over the frequency band of 9.84 to 15 GHz associated to a network analyser. Obtained results show moderate EMI shielding effectiveness for the milled Cu-based slabs.


Sign in / Sign up

Export Citation Format

Share Document