Creep Behaviors of CrMnFeCoNi High Entropy Alloy at Intermediate Temperatures

2017 ◽  
Vol 737 ◽  
pp. 21-26
Author(s):  
You Bin Kang ◽  
Kap Ho Lee ◽  
Sun Ig Hong

In this study, creep properties and fracture behavior of CrMnFeCoNi high entropy alloy (HEA) were studied at intermediate temperatures. The invert-type transient primary creep behaviors were observed in CrMnFeCoNi high entropy alloy. Creep behaviors of HEA are similar to those of class I solid solution alloys. The transient creep curves upon increase of stress by 5MPa in the steady state creep region did not change much except the sudden strain increase. And, no decrease of creep rate was observed upon increase of stress. Instead, the slightly invert transient creep or almost straight creep curves were observed, supporting the high friction stress. CrMnFeCoNi high entropy alloy has a stress exponent of 3.75 and the creep activation energy was calculated to be 278KJ/mole. The fracture strain increased from 1.3 to 1.6 with the decrease of stress from 96 MPa to 48MPa. The lower stress exponent along with the invert type primary creep curves strongly suggest that the creep of CrMnFeCoNi high entropy alloy at 600°C~650°C occurs by a glide controlled process.

Materials ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 883 ◽  
Author(s):  
Natalya Larianovsky ◽  
Alexander Katz-Demyanetz ◽  
Eyal Eshed ◽  
Michael Regev

2021 ◽  
Vol 194 ◽  
pp. 113633
Author(s):  
M. Zhang ◽  
E.P. George ◽  
J.C. Gibeling

2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

2006 ◽  
Vol 31 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Keng-Hao Cheng ◽  
Chia-Han Lai ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh

2019 ◽  
Author(s):  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
Junha Yang ◽  
Won-Mi Choi ◽  
Hyoung Seop Kim ◽  
...  

2019 ◽  
Author(s):  
V. Soni ◽  
Oleg N. Senkov, PhD ◽  
Jean-Philippe Couzinie, PhD ◽  
Yufeng Zheng, PhD ◽  
Bharat Gwalani, PhD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document