A Novel Preparation Method of CH3NH3PbI3 Thin Films for Perovskite Solar Cell

2018 ◽  
Vol 759 ◽  
pp. 54-58 ◽  
Author(s):  
Wei Liang Zhao

A novel two-step sequential deposition method is proposed for the preparation of CH3NH3PbI3 for perovskite solar cell. In order to increase the crystallinity of the PbI2 film, rapidly drop the anhydrous chlorobenzene to the center of the substrate at 6 seconds of spin coating. Ultimately, the quality of the CH3NH3PbI3 film is improved. Through the transmission spectrum of CH3NH3PbI3 thin films, it is clear to see the use of the additive reduces the transmittance of the film. The PL spectroscopy of CH3NH3PbI3 thin films dropping with different additives shows that CH3NH3PbI3 thin films all have an emission peak at 768nm. The J-V test curve of the perovskite solar cell shows that the use of the additive improves the power conversion efficiency.

2018 ◽  
Vol 67 ◽  
pp. 01022 ◽  
Author(s):  
Michael Hariadi ◽  
Istighfari Dzikri ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Indonesia is an archipelagic nation that has many small islands where the average load is low and currently supplied by diesel power generators. The drawbacks from these generators are cost constraints from its operation. Solar cells are the solution of this problem with the support of daily average radiation in Indonesia of 4.8 kWh/m2/day. There has been a lot of technology for the construction of solar cells such as silicon based, copper indium gallium selenide (CIGS), which was already successfully commercialized. However, these technologies have been obsolete and started to reach its maximum potential. Perovskite solar cells have a very high future potential, due to the increase on the efficiency of this technology in a relatively short amount of time. The current challenge for the fabrication of perovskite solar cell is the material cost and fabrication cost. This paper discussed the low-cost fabrication of perovskite solar cell using only spin coating deposition method and relatively also low-cost materials for the structure of the perovskite solar cell itself. As a result, we achieve perovskite solar cell with VOC of 0.6 V, ISC of 13 mA, FF of 0.28, and 1.2% efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (114) ◽  
pp. 94290-94295 ◽  
Author(s):  
Bobo Li ◽  
Yani Chen ◽  
Ziqi Liang ◽  
Deqing Gao ◽  
Wei Huang

A self-assembled monolayer of 4-aminobenzoic acid (PABA) modified TiO2 layer improved the interfacial compatibility and the quality of the above-deposited perovskite, leading to the power conversion efficiency of the device to be enhanced to 10.58%.


2018 ◽  
Vol 5 (6) ◽  
pp. 1354-1364 ◽  
Author(s):  
Huanyu Zhang ◽  
Rui Li ◽  
Mei Zhang ◽  
Min Guo

A 10 mol% Sr-substituted mesoscopic perovskite solar cell fabricated via a two-step spin-coating method exhibited the highest power conversion efficiency of 15.52%.


Solar Energy ◽  
2019 ◽  
Vol 186 ◽  
pp. 323-327 ◽  
Author(s):  
Weihong Chang ◽  
Hanmin Tian ◽  
Guochuan Fang ◽  
Dan Guo ◽  
Zheng Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Syed Sajjad Hussain ◽  
Saira Riaz ◽  
Ghazi Aman Nowsherwan ◽  
Khizer Jahangir ◽  
Akram Raza ◽  
...  

The highest power conversion efficiency (PCE) for organic-inorganic perovskite solar cells based on lead is reported as 25.2% in 2019. Lead-based hybrid perovskite materials are used in several photovoltaics applications, but these are not highly favored due to the toxicity of lead and volatility of organic cations. On the other hand, hybrid lead-free double perovskite has no such harm. In this research study, SCAPS numerical simulation is utilized to evaluate and compare the results of perovskite solar cell based on double perovskite FA 2 BiCuI 6 and standard perovskite CH 3 NH 3 PbI 3 as an active layer. The results show that the power conversion efficiency obtained in the case of FA 2 BiCuI 6 is 24.98%, while in the case of CH 3 NH 3 PbI 3 , it is reported as 26.42%. This indicates that the hybrid organic-inorganic double perovskite FA 2 BiCuI 6 has the ability to replace hybrid organic-inorganic perovskite CH 3 NH 3 PbI 3 to expand next-generation lead-free harmless materials for solar cell applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34152-34157 ◽  
Author(s):  
Junmei Cao ◽  
Fanning Meng ◽  
Liguo Gao ◽  
Shuzhang Yang ◽  
Yeling Yan ◽  
...  

The 2D Mxene material was successfully used as the counter electrode of the perovskite solar cell and achieved power conversion efficiencies of 13.84%.


MRS Advances ◽  
2018 ◽  
Vol 3 (32) ◽  
pp. 1819-1823 ◽  
Author(s):  
Martina Pantaler ◽  
Christian Fettkenhauer ◽  
Hoang L. Nguyen ◽  
Irina Anusca ◽  
Doru C. Lupascu

ABSTRACTThe lead free double perovskite Cs2AgBiBr6 is an upcoming alternative to lead based perovskites as absorber material in perovskite solar cells. So far, the majority of investigations on this interesting material have focused on polycrystalline powders and single crystals. We present vapor and solution based approaches for the preparation of Cs2AgBiBr6 thin films. Sequential vapor deposition processes starting from different precursors are shown and their weaknesses are discussed. Single source evaporation of Cs2AgBiBr6 and sequential deposition of Cs3Bi2Br9 and AgBr result in the formation of the double perovskite phase. Additionally, we show the possibility of the preparation of planar Cs2AgBiBr6 thin films by spin coating.


Sign in / Sign up

Export Citation Format

Share Document