Wet Powder Metallurgy Process for Dispersing Carbon Nanotubes and Fabricating Magnesium Composite

2018 ◽  
Vol 759 ◽  
pp. 86-91 ◽  
Author(s):  
Jiang Tao Hou ◽  
Wen Bo Du ◽  
Zhao Hui Wang ◽  
Xian Du ◽  
Chao Xu

A wet powder metallurgy (WPM) process was developed to disperse carbon nanotubes (CNTs), and to fabricate the CNTs reinforced Mg matrix (CNTs/Mg) composite. The dispersion effect of CNTs were evaluated by field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS) and high-resolution transmission electron microscopy (HR-TEM), respectively. Results showed that the CNTs were homogeneously dispersed on the surface of Mg powder. Adequate bonding and good interfacial interaction between the CNTs and Mg matrix contributed to the efficient load transferring from the CNTs to Mg matrix under a mechanical force. Furthermore, no brittle MgO was formed on the surface and it was beneficial to improving the adhesion of the CNTs to Mg matrix. With 0.5 wt.% CNTs addition, the CNTs/Mg composite experienced remarkable enhancements in tensile stress of 28% and Young’s modulus of 24%. The reasons responsible for these enhancements are suggested as the effective dispersion of the CNTs and the good interface bonding between the CNTs and Mg matrix.

2015 ◽  
Vol 776 ◽  
pp. 246-252 ◽  
Author(s):  
Ketut Suarsana ◽  
Rudy Soenoko

Al/(SiCw+Al2O3p) composite was a blend of fine aluminum powder serving as a matrix while Silicon Carbid whiskers (SiCw) and Alumina (Al2O3p) as a reinforcement. Powder metallurgy was used for the manufacture of composites according to the shape of the test specimen. Parameter testing was conducted with varied sintering holding time of 1 h, 3 h and 6 h at a sintering temperature of 500°C and 600°C. This study was conducted to know hardness properties, density, porosity and SEM analysis. The results show that the sintering process which has been conducted affects the physical and mechanical properties of the composite. Increased hardness and density occur due to the stronger or more dense interface bonding between matrix and reinforcement which are affected by the increase in the holding time and sintering temprature, where the highest is at 6 hours with 600°C, while the porosity decreases inversely proportional to the density and the hardness that occur in composite materials.


2014 ◽  
Vol 55 (3) ◽  
pp. 522-527 ◽  
Author(s):  
Hisashi Imai ◽  
Katsuyoshi Kondoh ◽  
Shufeng Li ◽  
Junko Umeda ◽  
Bunshi Fugetsu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3308 ◽  
Author(s):  
Jiangbo Wang

A polysilicone flame retardant (PA) was synthesized and covalently grafted onto the surface of carbon nanotubes (CNTs) via amide linkages to obtain modified CNTs (CNTs-PA). The grafting reaction was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), Transmission electron microscopy (TEM) and Thermogravimetric analysis (TGA), and the resultant CNTs-PA was soluble and stable in polar solvents Chloroform. Thiol-ene (TE)/CNTs-PA nanocomposites were prepared via Ultraviolet curing. The flame retardancy of thiol-ene nanocomposites was improved, especially for the heat release rate. Moreover, the results from Scanning electron microscopy (SEM) and Dynamic mechanical thermal analysis (DMTA) showed that the CNTs-PA improved the dispersion of CNTs in thiol-ene and enhanced the interfacial interaction between CNTs-PA and thiol-ene matrix.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


Sign in / Sign up

Export Citation Format

Share Document