scholarly journals Flame Retardancy and Dispersion of Functionalized Carbon Nanotubes in Thiol-Ene Nanocomposites

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3308 ◽  
Author(s):  
Jiangbo Wang

A polysilicone flame retardant (PA) was synthesized and covalently grafted onto the surface of carbon nanotubes (CNTs) via amide linkages to obtain modified CNTs (CNTs-PA). The grafting reaction was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), Transmission electron microscopy (TEM) and Thermogravimetric analysis (TGA), and the resultant CNTs-PA was soluble and stable in polar solvents Chloroform. Thiol-ene (TE)/CNTs-PA nanocomposites were prepared via Ultraviolet curing. The flame retardancy of thiol-ene nanocomposites was improved, especially for the heat release rate. Moreover, the results from Scanning electron microscopy (SEM) and Dynamic mechanical thermal analysis (DMTA) showed that the CNTs-PA improved the dispersion of CNTs in thiol-ene and enhanced the interfacial interaction between CNTs-PA and thiol-ene matrix.

2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


2018 ◽  
Vol 759 ◽  
pp. 86-91 ◽  
Author(s):  
Jiang Tao Hou ◽  
Wen Bo Du ◽  
Zhao Hui Wang ◽  
Xian Du ◽  
Chao Xu

A wet powder metallurgy (WPM) process was developed to disperse carbon nanotubes (CNTs), and to fabricate the CNTs reinforced Mg matrix (CNTs/Mg) composite. The dispersion effect of CNTs were evaluated by field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS) and high-resolution transmission electron microscopy (HR-TEM), respectively. Results showed that the CNTs were homogeneously dispersed on the surface of Mg powder. Adequate bonding and good interfacial interaction between the CNTs and Mg matrix contributed to the efficient load transferring from the CNTs to Mg matrix under a mechanical force. Furthermore, no brittle MgO was formed on the surface and it was beneficial to improving the adhesion of the CNTs to Mg matrix. With 0.5 wt.% CNTs addition, the CNTs/Mg composite experienced remarkable enhancements in tensile stress of 28% and Young’s modulus of 24%. The reasons responsible for these enhancements are suggested as the effective dispersion of the CNTs and the good interface bonding between the CNTs and Mg matrix.


2013 ◽  
Vol 667 ◽  
pp. 218-223
Author(s):  
M. Maryam ◽  
A.B. Suriani ◽  
M.S. Shamsudin ◽  
Mohamad Rusop Mahmood

This paper will report on the synthesis of bundles of aligned single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) from palm oil precursor and ferrocene as catalyst source by two stage aerosol-assisted CVD system at various deposition temperature ranging from 700-900oC. Palm oil was pyrolised into the furnace which contained the catalyst source producing black substances at the wall of the reaction furnace which were then collected to be characterized. Field emission scanning electron microscopy equipped with energy dispersive X-ray was used to obtain weight percentage, identification of samples and image of CNTs which showed different structures and diameters of CNTs relative to the deposition temperature of furnace. Raman Spectroscopy was used to further study the quality and identification of samples and finally X-ray powder diffraction was used to determine the crystalinity of samples. Individual micrograph of MWNTs at optimized deposition temperature was also obtained from the high resolution transmission electron microscopy.


2013 ◽  
Vol 67 (11) ◽  
Author(s):  
Gantigaiah Krishnamurthy ◽  
Sarika Agarwal

AbstractThe synthesis of well-aggregated carbon nanotubes in the form of bundles was achieved by the catalytic reduction of 1,2-dichlorobenzene by a solvothermal approach. The use of 1,2-dichlorobenzene as a carbon source yielded a comparably good percentage of carbon nanotubes in the range of 60–70 %, at a low reaction temperature of 200°C. The products obtained were analysed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. The X-ray diffraction studies implied the presence of pure, crystalline, and well-ordered carbon nanotubes. The scanning electron and transmission electron microscopic images revealed the surface morphology, dimensions and the bundled form of the tubes. These micrographs showed the presence of multi-walled carbon nanotubes with an outer diameter of 30–55 nm, inner diameter of 15–30 nm, and lengths of several hundreds of nanometers. Brunauer-Emmett-Teller-based N2 gas adsorption studies were performed to determine the surface area and pore volume of the carbon nanotubes. These carbon nanotubes exhibit a better surface area of 385.30 m2 g−1. In addition, the effects of heating temperature, heating time, amount of catalyst and amount of carbon source on the product yield were investigated.


2012 ◽  
Vol 602-604 ◽  
pp. 183-186 ◽  
Author(s):  
Jing Liu ◽  
Rong Wu ◽  
Jin Li ◽  
Yan Fei Sun ◽  
Ji Kang Jian

In this paper, we report the synthesis of cubic silicon carbide (3C-SiC) nanoparticles by direction reaction of silicon powders and carbon nanotubes. The as-prepared SiC nanoparticles were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and Raman scattering at room temperature. The possible growth mechanism is proposed.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Liu ◽  
Chunli Guo ◽  
Xiaojian Ma ◽  
Changhui Sun ◽  
Fengxia Li ◽  
...  

Multiwalled carbon nanotubes filled with MgO nanorods were synthesized through the reaction of ethanol and Mg powder in the presence ofTiO2at 400C°. X-ray powder diffraction indicated that the sample was composed of graphite and cubic MgO. Transmission electron microscopy studies showed that multi-walled CNTs with the outer diameters of 70–130 nm were filled with discontinuous MgO nanorods whose diameter was in the range of 25–40 nm. The ratios of the band intensities(ID/IG=0.67)in Raman spectrum implied that carbon nanotubes had good crystallinity. The influence of correlative reaction factors on the morphology of the sample and the possible formation mechanism were discussed.


2001 ◽  
Vol 16 (11) ◽  
pp. 3133-3138 ◽  
Author(s):  
Jun Liu ◽  
X. Zhang ◽  
Yingjiu Zhang ◽  
Rongrui He ◽  
Jing Zhu

A relatively low-cost, high-efficiency method is reported to synthesize AlN nanowires, using carbon nanotubes as templates. The AlN nanowires were fabricated at 1100 °C, for 60 min. The diameters of the product could be roughly controlled by the sizes of carbon nanotubes selected as starting materials. The AlN nanowires obtained were among the thinnest ever known. X-ray diffraction, selected-area diffraction, energy dispersive spectroscopy, and high-resolution transmission electron microscopy, etc. were employed to characterize the products, which were found to be single crystals with some defects. The axes of the nanowires are normal to {1010} crystal planes. A new synthesis mechanism is proposed.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Thu V. Tran ◽  
Shinya Maenosono

AbstractAl-doped ZnO (AZO) nanoparticles (NPs) were synthesized by the solvothermal decomposition. The as-synthesized AZO NPs were characterized by X-ray diffraction and transmission electron microscopy. These NPs were well dispersible in non-polar solvents at high concentration to produce AZO nanoink. The AZO nanoparticulate films were prepared from AZO nanoink by spin coating technique. Thickness, surface morphology, optical transparency and conductivity of the films were characterized by surface profilometer, scanning electron microscopy, UV-Vis spectroscopy and Hall measurements. The AZO nanoparticlulate films had highly optical transmittance and well electrical conductivity, which are potential for optoelectronic applications.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.


Sign in / Sign up

Export Citation Format

Share Document