scholarly journals Aging Behavior and Electric Field Induced Instabilities in Lead Magnesium Niobate - Titanate Relaxor Ferroelectric Single Crystal

2018 ◽  
Vol 778 ◽  
pp. 212-216
Author(s):  
Ghulam Shabbir

The aging characteristics and influence of electric field poling on the phase transitions in (1-x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) [110]-oriented single crystal were examined through temperature dependent complex capacitance study. In addition to two phase transition anomalies exhibited by the crystal in the virgin state, other phase transition instabilities were observed in the complex capacitance of the crystal under the external applied electric field. The aging behavior deviated from the linear logarithmic law and followed the stretched exponential expression typical for relaxor ferroelectrics. Moreover, aging decreased with frequency while it became faster with increase in temperature towards the paraelectric – ferroelectric structural phase transition temperature.

2006 ◽  
Vol 966 ◽  
Author(s):  
Sanju Gupta

ABSTRACTRelaxors (PZN, in particular) is an important class of self-assembled nanostructure composite ferroelectric oxides (or perovskite) materials. The interesting features associated with the nanoregions/nanodomains required to describe these relaxors give rise to the most relevant device related characteristics and peculiar physical properties in these materials. In addition, they possess astronomical property coefficients by themselves or when modified with lead titanate (PT) forming solid solution. In the past, we conducted temperature dependent Raman scattering studies on solid solution (1−x)PZN−xPT relaxors single crystals with varying composition; x = 0.02, 0.085, and 0.11. These studies were performed to obtain relevant information about lattice/phonon dynamics for matching the application criteria such as electromechanical actuators. We showed that the sharp structural phase transition occurs at or near 460 K which is a first-order transition by fitting two spectroscopic variables in Raman spectra for one of the representative bands occurring at 277 cm−1. Besides structural phase transition, polarization mechanism for the unpoled (x = 0.02) and poled (x = 0.05) specimens is also investigated to understand the polarization mechanism in relaxors using Raman spectroscopy. The difference in the case of poled specimen is accounted for by the influence of residual electric field. Poling also suggested an enhanced local ordering and the increase in the volume of the polar nano-regions. In the present report, we attempted to determine the nanopolar region size and distribution using the above mentioned temperature dependent Raman spectra. We discuss the most suitable mathematical form of nanodomain size distribution for such inhomogeneous material is log-normal and it is bimodal depending upon the temperature regime in addition to composition. These studies helped to determine the size distribution of nanoscopic embodiments in relaxor ferroelectrics using Raman spectroscopy as a function of temperature which is a dynamical phenomenon.


Author(s):  
Khai-Nghi Truong ◽  
Carina Merkens ◽  
Martin Meven ◽  
Björn Faßbänder ◽  
Richard Dronskowski ◽  
...  

Single-crystal neutron diffraction experiments at 100 and 2.5 K have been performed to determine the structure of 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) with respect to its protonation pattern and to monitor a low-temperature phase transition. Solid HacacPy exists as the enol tautomer with a short intramolecular hydrogen bond. At 100 K, its donor···acceptor distance is 2.450 (8) Å and the compound adopts space group C2/c, with the N and para-C atoms of the pyridyl ring and the central C of the acetylacetone substituent on the twofold crystallographic axis. As a consequence of the axial symmetry, the bridging hydrogen is disordered over two symmetrically equivalent positions, and the carbon–oxygen bond distances adopt intermediate values between single and double bonds. Upon cooling, a structural phase transition to the t 2 subgroup P\bar 1 occurs; the resulting twins show an ordered acetylacetone moiety. The phase transition is fully reversible but associated with an appreciable hysteresis in the large single crystal under study: transition to the low-temperature phase requires several hours at 2.5 K and heating to 80 K is required to revert the transformation. No significant hysteresis is observed in a powder sample, in agreement with the second-order nature of the phase transition.


2000 ◽  
Vol 655 ◽  
Author(s):  
Matt Poulsen ◽  
S. Adenwalla ◽  
Stephen Ducharme ◽  
V.M. Fridkin ◽  
S.P. Palto ◽  
...  

AbstractX-ray diffraction was used to probe the structural changes associated with the conversion of the paraelectric phase to the ferroelectric phase that results from the application of a large external electric field. The samples under study are ultrathin (150 to 250 Å) Langmuir-Blodgett films of the copolymer vinylidene fluoride (70%) with trifluoroethylene (30%) deposited on aluminum-coated silicon. Theta-2theta X-ray diffraction was used to measure the change in inter-layer spacing perpendicular to the film surface. Upon heating at zero external electric field, the crystalline films undergo a structural phase transition, at 100± 5°C, from the all-trans ferroelectric phase to the trans-gauche paraelectric phase. [1,2] Above the phase transition temperature, the non-polar paraelectric phase can be converted back to the polar ferroelectric phase, in a smooth continuous process, using a large external electric field (∼1 GV/m). For example, at 100° C the ferroelectric phase first appears above 0.2 GV/m and increases steadily in proportion while the paraelectric phase decreases until complete conversion to the ferroelectric phase is achieved at approximately 0.6 GV/m.


1995 ◽  
Vol 197 (5-6) ◽  
pp. 439-443 ◽  
Author(s):  
Z.J. Yang ◽  
M. Yewondwossen ◽  
R.A. Dunlap ◽  
D.J.W. Geldart ◽  
S.L. Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document