Use of an External Electric Field to Convert the Paraelectric Phase to the Ferroelectric Phase in Ultra-thin Copolymer Films of P(VDF-TrFE)

2000 ◽  
Vol 655 ◽  
Author(s):  
Matt Poulsen ◽  
S. Adenwalla ◽  
Stephen Ducharme ◽  
V.M. Fridkin ◽  
S.P. Palto ◽  
...  

AbstractX-ray diffraction was used to probe the structural changes associated with the conversion of the paraelectric phase to the ferroelectric phase that results from the application of a large external electric field. The samples under study are ultrathin (150 to 250 Å) Langmuir-Blodgett films of the copolymer vinylidene fluoride (70%) with trifluoroethylene (30%) deposited on aluminum-coated silicon. Theta-2theta X-ray diffraction was used to measure the change in inter-layer spacing perpendicular to the film surface. Upon heating at zero external electric field, the crystalline films undergo a structural phase transition, at 100± 5°C, from the all-trans ferroelectric phase to the trans-gauche paraelectric phase. [1,2] Above the phase transition temperature, the non-polar paraelectric phase can be converted back to the polar ferroelectric phase, in a smooth continuous process, using a large external electric field (∼1 GV/m). For example, at 100° C the ferroelectric phase first appears above 0.2 GV/m and increases steadily in proportion while the paraelectric phase decreases until complete conversion to the ferroelectric phase is achieved at approximately 0.6 GV/m.

2021 ◽  
Vol 118 (13) ◽  
pp. 132903
Author(s):  
Mao-Hua Zhang ◽  
Changhao Zhao ◽  
Lovro Fulanović ◽  
Jürgen Rödel ◽  
Nikola Novak ◽  
...  

Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


2021 ◽  
Vol 54 (5) ◽  
pp. 1317-1326
Author(s):  
Arsen Petrenko ◽  
Nataliya Novikova ◽  
Alexander Blagov ◽  
Anton Kulikov ◽  
Yury Pisarevskii ◽  
...  

The anisotropy of deformations in potassium acid phthalate crystals arising under the action of an external electric field up to 1 kV mm−1 applied along the [001] polar axis was studied using X-ray diffraction methods at room temperature. Electrical conductivity was measured and rocking curves for reflections 400, 070 and 004 were obtained by time-resolved X-ray diffractometry in Laue and Bragg geometries. Two saturation processes were observed from the time dependences of the electrical conductivity. A shift in the diffraction peaks and a change in their intensity were found, which indicated a deformation of the crystal structure. Rapid piezoelectric deformation and reversible relaxation-like deformation, kinetically similar to the electrical conductivity of a crystal, were revealed. The deformation depended on the polarity and strength of the applied field. The deformation was more noticeable in the [100] direction and was practically absent in the [001] direction of the applied field. X-ray diffraction analysis revealed a disordered arrangement of potassium atoms, i.e. additional positions and vacancies. The heights of potential barriers between the positions of K+ ions and the paths of their possible migration in the crystal structure of potassium acid phthalate were determined. The data obtained by time-resolved X-ray diffractometry and X-ray structure analysis, along with additional electrophysical measurements, allow the conclusion that the migration of charge carriers (potassium cations) leads to lateral deformation of the crystal structure of potassium phthalate in an external electric field.


2012 ◽  
Vol 68 (4) ◽  
pp. 412-423 ◽  
Author(s):  
Nikolay A. Tumanov ◽  
Elena V. Boldyreva

The effect of pressure on DL-alanine has been studied by X-ray powder diffraction (up to 8.3 GPa), single-crystal X-ray diffraction and Raman spectroscopy (up to ∼ 6 GPa). No structural phase transitions have been observed. At ∼ 1.5–2 GPa, cell parameters b and c become accidentally equal to each other, but the space-group symmetry does not change. There is no phase transition between 1.7 and 2.3 GPa, contrary to what has been reported earlier [Belo et al. (2010). Vibr. Spectrosc. 54, 107–111]. The presence of the second phase transition, which was claimed to appear within the pressure range from 6.0 to 7.3 GPa (Belo et al., 2010), is also argued. The changes in the Raman spectra have been shown to be continuous in all the pressure ranges studied.


1996 ◽  
Vol 8 (11) ◽  
pp. 1615-1620 ◽  
Author(s):  
V A Shuvaeva ◽  
M Yu Antipin ◽  
O E Fesenko ◽  
Yu T Struchkov

Sign in / Sign up

Export Citation Format

Share Document