Study on the High Temperature Creep Behavior of 30Cr25Ni20 Heat-Resistant Steel

2019 ◽  
Vol 814 ◽  
pp. 157-162
Author(s):  
You Yang ◽  
Xiao Dong Wang ◽  
Wei Feng Tang

The high temperature creep test of heat-resisting steel 30Cr25Ni20 for automobile exhaust manifolds was carried out, and the creep strain-time curves at 650°C and 700°C in the different loads were obtained. The effects of different creep temperature and stress on creep life of materials were studied. The microstructure of the fracture after creep was observed by scanning electron microscopy. Microstructures before and after creep at different temperatures were compared by optical microscopy. The results show that the creep fracture life of heat-resistant steel decreases with the increase of stress at the same temperature. The creep fracture life decreases with the increase of temperature at the same stress, too. The fracture of heat-resistant steel shows good high temperature plasticity and a ductile fracture after creep. The fracture dimples become deeper with the increase of stress. At 650°Cand 700°C, the stress exponent is 8.6 and 6, respectively. When the sample was subjected to high temperature creep at 700°C, the precipitates increase obviously and the reticular structure became very large. At this point, the internal structure of the material is destroyed, and the matrix structure becomes unevenly distributed. The failure of the internal structure leads to the dramatic increase of the creep strain, and the failure of the internal structure will be more serious with the deformation of the sample.

2011 ◽  
Vol 27 (4) ◽  
pp. 344-351 ◽  
Author(s):  
Ping Hu ◽  
Wei Yan ◽  
Wei Sha ◽  
Wei Wang ◽  
Yiyin Shan ◽  
...  

2018 ◽  
Vol 37 (6) ◽  
pp. 539-544
Author(s):  
Chengzhi Zhao ◽  
Ning Li ◽  
Yihan Zhao ◽  
Hexin Zhang

AbstractA new kind of martensitic ZG1Cr10MoWVNbN heat-resistant steel has been attracted more attentions in recent years, which is mainly applied in ultra-supercritical steam turbines. The ageing property for ZG1Cr10MoWVNbN heat-resistant steel is very important because it often serves for long-time at high-temperature environment. Herein, a long-term ageing heat treatment was conducted on ZG1Cr10MoWVNbN steel at 600 °C heat for 17,000 hours. The microstructure evolution and property variation of the ZG1Cr10MoWVNbN steel were analysed before and after ageing, and also the effect of the precipitates on the mechanical properties was studied. The result showed that strength, the plastic index and impact power of the ZG1Cr10MoWVNbN steel were gradually decreased after long-term and high-temperature ageing at 600 °C due to the changes of martensite morphology and the coarsening of M23C6 carbide precipitation phase. Furthermore, fine precipitation of matrix MX carbide can also attribute to the change of mechanical properties at high temperature.


Author(s):  
Chong Gao Bao ◽  
Jian Dong Xing ◽  
Yi Min Gao ◽  
Enze Wang

2020 ◽  
Vol 861 ◽  
pp. 83-88
Author(s):  
You Yang ◽  
Xiao Dong Wang

High temperature oxidation dynamic behaviors and mechanisms for 30Cr25Ni20Si heat-resistant steel were investigated at 800, 900 and 1000°C. The oxide layers were characterized by scanning electron microscopy (SEM-EDS), X-ray diffractometer (XRD). The results showed that the oxidation rate of test alloys is increased with increasing the oxidation time. The oxidation dynamic curves at 800 and 900°C follow from liner to parabolic oxidation law. The transition point is 10 h. At 1000°C, the steel exhibits a catastrophic oxidation, and the oxidation mass gain value at 50 h is 0.77 mg/cm2. This suggests that the steel at 900°C has formed a dense protective surface oxidation film, effectively preventing the diffusion of the oxygen atoms and other corrosive gas into the alloy. Therefore, at the first stage of oxidation, chemical adsorption and reaction determine the oxide film composition and formation process. At the oxide film growth stage, oxidation is controlled by migration of ions or electrons across the oxide film. When the spinel scale forms, it acts as a compact barrier for O element and improving the oxidation resistance.


Sign in / Sign up

Export Citation Format

Share Document