m23c6 carbide
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

Lubricants ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 108
Author(s):  
Bauyrzhan Rakhadilov ◽  
Ainur Seitkhanova ◽  
Zarina Satbayeva ◽  
Gulnara Yerbolatova ◽  
Yulianna Icheva ◽  
...  

This paper investigates how electrolytic plasma hardening (PEH) bears upon the changes in the phase structural and tribological properties of steel 0.34C-1Cr-1Ni-1Mo-Fe, which is widely used in manufacturing highly stressed gears. The samples of steel 0.34C-1Cr-1Ni-1Mo-Fe went through the PEH in an electrolyte containing an aqua solution of 20% calcined soda (Na2CO3) and 10% carbamide ((NH2)2CO). The initial steel 0.34C-1Cr-1Ni-1Mo-Fe is stated to have the following structural components: a lamellar pearlite with volume share of 35%, a ferrite-carbide mixture of ~45% and a fragmented ferrite of ~20%; after the PEH it contains lath-lamellar martensite, fine particles of cementite and M23C6 carbide. The durability of steel 0.34C-1Cr-1Ni-1Mo-Fe was found to rise by 3.4 times after the PEH and its microhardness increased in 2.6 times. The curve-tension of the crystal lattice was established to be like plastic (χ = χpl) and does not cause the formation of microcracks in the material.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1690
Author(s):  
Young-Gy Song ◽  
Jun-Seok Oh ◽  
Baig-Gyu Choi ◽  
Chang-Yong Jo ◽  
Je-Hyun Lee

The precipitation behavior of M23C6 carbide during thermal treatment of high-Cr white iron with various fractions of primarily solidified dendrite was studied and reviewed. M23C6 precipitation in the primarily solidified dendrite occurred preferentially during conventional heat treatment, whereas it occurred scarcely in the eutectic austenite. The reaction between M7C3 and austenite caused the dissolution of M7C3 into austenite, followed by precipitation of M23C6 along the periphery of eutectic M7C3. Relatively low-temperature thermal treatment (modified heat treatment) led to precipitation of M23C6 particles in the eutectic austenite, which is presumed to be caused by solubility difference depending on temperature.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1576
Author(s):  
Jun-Seok Oh ◽  
Young-Gy Song ◽  
Baig-Gyu Choi ◽  
Chalothorn Bhamornsut ◽  
Rujeeporn Nakkuntod ◽  
...  

High Cr white irons with various fractions of primary dendrite have been prepared through the modification of their chemical composition. Increasing C and Cr contents decreased the primary dendrite fraction. Eutectic solidification occurred with the phase fraction ratio of austenite: M7C3 = 2.76:1. The measured primary dendrite fractions were similar to the calculated results. ThermoCalc calculation successfully predicted fractions of M7C3, austenite, and M23C6. Conventional heat treatment at high temperature caused a destabilization of austenite, releasing it’s solute elements to form M23C6 carbide. Precipitation of M23C6 during destabilization preferentially occurred within primary (austenite) dendrite, however, the precipitation scarcely occurred within austenite in eutectic phase. Thus, M23C6 precipitation by destabilization was relatively easy in alloys with a high fraction of primary dendrite.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5018
Author(s):  
Maohong Yang ◽  
Zheng Zhang ◽  
Linping Li

This paper studies the evolution of the microstructure and microhardness in the G115 side of the G115/Sanicro25 dissimilar steel welded joint during the creep process. The joints were subjected to creep tests at 675 °C, 140 MPa, 120 MPa and 100 MPa. A scanning electron microscope equipped with an electron backscattering diffraction camera was used to observe the microstructure of the cross-section. The fracture position of the joint and the relationship between the cavity and the second phase were analyzed. The microstructure morphology of the fracture, the base metal and the thread end was compared and the composition and size of the Laves phase were statistically analyzed. The results show that the fracture locations are all located in the fine-grain heat-affected zone (FGHAZ) zone, and the microstructure near the fracture is tempered martensite. There are two kinds of cavity in the fracture section. Small cavities sprout adjacent to the Laves phase; while large cavities occupy the entire prior austenite grain, there are more precipitated phases around the cavities. The Laves phase nucleates at the boundary of the M23C6 carbide and gradually grows up by merging the M23C6 carbide. Creep accelerates the coarsening rate of the Laves phase; aging increases the content of W element in the Laves phase.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1340
Author(s):  
Abdelkrim Redjaïmia ◽  
Antonio Manuel Mateo Garcia

This study is focused on isothermal and anisothermal precipitation of M23C6 carbides from the fully ferritic structure of the (γ + δ) austenitic-ferritic duplex stainless steel X2CrNiMo2253, (2205). During isothermal heat treatments, small particles of K-M23C6 carbide precipitates at the δ/δ grain-boundaries. Their formation precedes γ and σ-phases, by acting as highly potential nucleation sites, confirming the undertaken TEM investigations. Furthermore, anisothermal heat treatment leads to the formation of very fine islands dispersed throughout the fully δ-ferritic matrix. TEM characterization of these islands reveals a particular eutectoid, reminiscent of the well-known (γ-σ)—eutectoid, usually encountered in this kind of steel. TEM and electron microdiffraction techniques were used to determine the crystal structure of the eutectoid constituents: γ-Austenite and K-M23C6 carbides. Based on this characterization, orientation relationships between the two latter phases and the ferritic matrix were derived: cube-on-cube, on one hand, between K-M23C6 and γ-Austenite and Kurdjumov-Sachs, on the other hand, between γ-Austenite and the δ-ferritic matrix. Based on these rational orientation relationships and using group theory (symmetry analysis), the morphology and the only one variant number of K-M23C6 in γ-Austenite have been elucidated and explained. Thermodynamic calculations, based on the commercial software ThermoCalq® (Thermo-Calc Software, Stockholm, Sweden), were carried out to explain the K-M23C6 precipitation and its effect on the other decomposition products of the ferritic matrix, namely γ-Austenite and σ-Sigma phase. For this purpose, the mole fraction evolution of K-M23C6 and σ-phase and the mass percent of all components entering in their composition, have been drawn. A geometrical model, based on the corrugated compact layers instead of lattice planes with the conservation of the site density at the interface plane, has been proposed to explain the transition δ-ferrite ⇒ {γ-Austenite ⇔ K-M23C6}.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 900
Author(s):  
Chengming Fuyang ◽  
Yang Zhou ◽  
Bing Shao ◽  
Tianyu Zhang ◽  
Xiaofeng Guo ◽  
...  

The microstructures and tensile properties of fresh and aged reformer furnace tubes and a fresh-to-aged welded joint were investigated to assess the weldability of fresh-to-aged reformer furnace tubes. Damage evaluation of the fresh-to-aged welded joint was also carried out using the modified Kachanov–Rabotnov model. The experimental results showed that M7C3 carbide transforms into M23C6 carbide and secondary carbides precipitate in the matrix after aging treatment. With continuous exposure, the interdendritic precipitates coalesced and coarsened and the number of secondary carbides reduced gradually. Microdefects were absent in the fresh-to-aged welded joint, and the tensile properties of the welded joint were close to the as-cast alloy, which confirms the weldability of fresh-to-aged furnace tubes. According to the results of the simulation, stress redistribution occurred during the creep process and the peak damage of the welded joint was located in the aged tube. The maximum damage of the fresh-to-aged welded joint reached 34.01% at 1.5 × 105 h.


2021 ◽  
Vol 72 (4) ◽  
pp. 22-26
Author(s):  
Hanna Purzyńska ◽  
Grzegorz Golański ◽  
Michał Kwiecień ◽  
Dariusz Paryż

The article presents an analysis of precipitation processes in heat-resistant TP347HFG steel after 41,000 h of operation at 585°C. Microstructure investigation showed that the use of the tested steel resulted mainly in the precipitation processes occurring at grain boundaries. Identification of the precipitates showed the presence of M23C6 carbides and σ phase particles along boundaries. Single M23C6 carbide particles were revealed also at twin boundaries. Inside austenite grains, apart from large, primary precipitates, finely-dispersed secondary NbX particles (X = C,N) were also observed.


Author(s):  
Alex Bridges ◽  
John Shingledecker ◽  
Alex Torkaman ◽  
Lonnie Houck

Abstract In this paper, AM produced test samples of a IN939 derivative nickel-based alloy were tested for tensile, fatigue and creep properties at temperatures up to 871°C and compared to the traditional cast material. Initial results showed improved tensile and fatigue strength, but a reduction in both long-term creep rupture strength and creep ductility in the AM produced material compared to the cast baseline. Microstructural observations in the AM produced material showed a significant difference in the overall metallurgical characteristics beyond grain size compared to the castings. In addition to the laboratory studies and to provide a direct comparison between AM and traditional castings, both AM and cast components were tested in live engine trials exceeding 4,000 hours. Detailed scanning electron microscopy techniques were used to evaluate the evolution of grain size, gamma-prime, MC carbide and secondary M23C6 carbide size and distribution throughout a 5-step heat treatment process. Post-test evaluations for creep rupture specimens of the AM material showed creep cavitation near grain boundaries. The results from the AM produced material are discussed in comparison to expected properties and characteristics from traditional casting methods. Results have shown that material production and short-term metallurgical properties are sufficient to produce quality high temperature stationary guide vanes, but additional research and development is needed to optimize the AM process to achieve high-temperature creep behavior comparable to castings.


2020 ◽  
Vol 121 (8) ◽  
pp. 804-810
Author(s):  
E. S. Tkachev ◽  
A. N. Belyakov ◽  
R. O. Kaibyshev

Sign in / Sign up

Export Citation Format

Share Document