The Effect of Accelerated Salt Spray Exposure on Mechanical Properties of Glass Fiber Reinforced Polyester Composite

2021 ◽  
Vol 1028 ◽  
pp. 223-227
Author(s):  
Salman Farishi ◽  
Retno Wulandari ◽  
Annisa Rifathin ◽  
Dasep Rusmana ◽  
Nurul Jamilah

This paper presents the effect of accelerated salt spray (fog) exposure on commercially glass fiber reinforced polyester composite to determine the durability of the material. Aging behavior after exposure in the salt-spray environment was studied by mechanical properties i.e. flexural stress and flexural modulus. The accelerated salt spray exposure was conducted by Copper-Accelerated Acetic Acid Salt Spray (CASS) Test according to ASTM B368. The CASS exposure was carried out for 120 hours and observed every 24 hours. The flexural modulus results tend to be constant up to 4 days and more significant change on 5th day of measurement. Furthermore, the morphology of specimens investigated by a Scanning Electron Microscopy (SEM). The SEM results also showed that only scratch occurred on the surface of the specimens test. The longer of the CASS exposure time, the higher the number of scratches. From this study, it could be concluded that Glass Fiber Reinforced Polyester Composite has slightly damage for 120 hours CASS test exposure.

2013 ◽  
Vol 48 (24) ◽  
pp. 3025-3034 ◽  
Author(s):  
Ilias Mouallif ◽  
Abdelkhalek Latrach ◽  
M’hamed Chergui ◽  
Abdelkader Benali ◽  
Mohammed Elghorba ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 463 ◽  
Author(s):  
Ke Chen ◽  
Mingyin Jia ◽  
Hua Sun ◽  
Ping Xue

In this paper, glass fiber-reinforced polyamide-6 (PA-6) composites with up to 70 wt% fiber contents were successfully manufactured using a pultrusion process, utilizing the anionic polymerization of caprolactam (a monomer of PA-6). A novel thermoplastic reaction injection pultrusion test line was developed with a specifically designed injection chamber to achieve complete impregnation of fiber bundles and high speed pultrusion. Process parameters like temperature of injection chamber, temperature of pultrusion die, and pultrusion speed were studied and optimized. The effects of die temperature on the crystallinity, melting point, and mechanical properties of the pultruded composites were also evaluated. The pultruded composites exhibited the highest flexural strength and flexural modulus, reaching 1061 MPa and 38,384 MPa, respectively. Then, effects of fiber contents on the density, heat distortion temperature, and mechanical properties of the composites were analyzed. The scanning electron microscope analysis showed the great interfacial adhesion between fibers and matrix at 180 °C, which greatly improved the mechanical properties of the composites. The thermoplastic reaction injection pultrusion in this paper provided an alternative for the preparation of thermoplastic composites with high fiber content.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2020 ◽  
Vol 21 (12) ◽  
pp. 2915-2926
Author(s):  
Aimin Zhang ◽  
Guoqun Zhao ◽  
Jialong Chai ◽  
Junji Hou ◽  
Chunxia Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document