Research Progress on Carbonation Resistance of Alkali-Activated Slag Cement Concrete

2021 ◽  
Vol 1036 ◽  
pp. 347-357
Author(s):  
Lan Fang Zhang ◽  
Liu Yang ◽  
Bin Hong Fu ◽  
Yu Yue

The carbonation process in alkali-activated slag cement concrete is more complicated. This paper reviews the research progress of carbonation resistance of alkali-activated slag cement concrete at home and abroad and summarizes the existing research on carbonation. The focus is on the carbonation mechanism, test methods, influencing factors and the effect of carbonation on the performance of alkali-activated slag cement concrete. The problems existing in the current research on the anti-carbonation property of alkali-activated slag cement concrete and the issues for further research are proposed.

2014 ◽  
Vol 525 ◽  
pp. 482-490
Author(s):  
Lu Qian Weng ◽  
Hai Lin Cao ◽  
Pavel V. Krivenko ◽  
Yue Guo ◽  
O.N. Petropavlovsky ◽  
...  

Alkali activated slag cement concretes are low carbon footprint building mateirals, which can meet the requirements for sustainable development. The paper covers the results of modeling a thermo-stressed state of the cast-in-situ massive alkali activated slag cement concrete structure hardened under hot environment to meet the requirements for marine engineering application. The results show that alkali activated slag cement concretes have a substantially lower heat release than that of Portland, are suitable for cast-in-situ massive alkali activated slag cement concrete structure even under hot environment.


2021 ◽  
Vol 289 ◽  
pp. 123201
Author(s):  
Juan He ◽  
Wenbin Bai ◽  
Weihao Zheng ◽  
Junhong He ◽  
Guochen Sang

Alkali-activated concrete (AAC) is mounting as a feasible alternative to OPC assimilated to reduce greenhouse gas emanated during the production of OPC. Use of pozzolana results in gel over-strengthening and fabricate less quantity of Ca(OH)2 which provide confrontation to concrete against hostile environment. (AAC) is potential due to inheriting the property of disbursing CO2 instantly from the composition. Contrastingly an option to ordinary Portland cement (OPC), keeping this fact in mind the goal to evacuate CO2 emits and beneficiate industrial by-products into building material have been taken into consideration. Production of alkali-activated cement emanates CO2 nearly 50-80% less than OPC. This paper is the general assessment of current report on the fresh and hardened properties of alkali-activated fly ash (AAF), alkali-activated slag (AAS), and alkali activated slag and fly ash (AASF) concrete. In the recent epoch, there has been a progression to blend slag with fly ash to fabricate ambient cured alkali-activated concrete. Along with that the factors like environmental friendliness, advanced studies and investigation are also mandatorily required on the alkali activated slag and fly ash concrete. In this way, the slag to fly ash proportion impacts the essential properties and practical design of AAC. This discusses and reports the issue in an intensive manner in the following sections. This will entail providing a good considerate of the following virtues like workability, compressive strength, tensile strength, durability issues, ambient and elevated-temperature curing of AAC which will improve further investigation to elaborate the correct test methods and to commercialize it.


Author(s):  
Xiao Huang ◽  
Chen Xin ◽  
Jiang-shan Li ◽  
Ping Wang ◽  
Shuai Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document