Materials for 3D Concrete Printing: Approach to Standardization in Russia

2021 ◽  
Vol 1043 ◽  
pp. 141-148
Author(s):  
Aleksey Adamtsevich ◽  
Andrey Pustovgar ◽  
Liubov Adamtsevich

3D Concrete Printing (3DCP) technology, compared to traditional monolithic construction, gives a possibility to increase the workspeed and reduce the manual laborproportion, reduce material consumption and also improve the architectural appearance of buildings being erected. At the same time, more stringent requirements are imposed on the material for 3D printing in terms of rheological characteristicscontrol, strength developmentkinetics, interplay adhesion and some other parameters than for conventional ready-mixed concrete. Therefore, to ensure the mass application of technologies for additive construction production using concrete as printing ink, it is necessary to develop a regulatory and technical base, including the development of standard test methods to determine the operational properties of this typeofmaterials. The article examines the main trends in the management of the materials’properties for construction 3D printing based on cement binders and describes the principles of building a system for standardizing materials for 3D printing construction in Russia, which was developed with the participation of the authors of this article.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3475
Author(s):  
Izabela Skrzypczak ◽  
Agnieszka Leśniak ◽  
Piotr Ochab ◽  
Monika Górka ◽  
Wanda Kokoszka ◽  
...  

Proper quality assessment of ready-mixed concrete, which is currently the principal material for construction, land engineering and architecture, has an impact on the optimisation and verification of correct functioning of individual stages of the production process. According to the European Standard EN 206 “Concrete–Specification, performance, production and conformity”, obligatory conformity control of concrete is carried out by the producer during its production. In order to verify the quality of concrete, investors generally commission independent laboratory units to perform quality assessment of both concrete mix and hardened concrete, which guarantees a high quality of construction works. One of the essential tools for ensuring the quality of test results is the participation of laboratories in the so-called proficiency testing (PT) or inter-laboratory comparisons (ILC). Participation in PT/ILC programmes is, on the one hand, a tool for demonstrating the laboratory’s performance, on the other hand an aid for maintaining the quality of available concrete tests and validating test methods. Positive evaluation is a confirmation of the laboratory’s capability for performing the tests. The paper presents the results of laboratory proficiency tests carried out by means of inter-laboratory comparisons, as shown in the example of quality assessment of ready-mixed concrete for nine participating laboratories. The tests were performed for concrete of the following parameters: strength class C30/37, consistency S3, frost resistance degree F150, and water resistance degree W8. This involved determining consistencies, air content and density of the concrete mix, and compressive strength of hardened concrete. For the evaluation of laboratory performance results, z-score, ζ-score and En-score were applied. The innovation of the proposed study lies in employing both classical and iterative robust statistical methods. In comparison with classical statistical methods, robust methods ensure a smaller impact of outliers and other anomalies on the measurement results. Following the analyses, clear differences were found between the types of detected discrepancy of test results, which occurred due to the nature of individual parameters. For two laboratories, two scores revealed unsatisfactory results for concrete mix consistency. The main reasons can be pouring into the cone-shaped form a concrete mixture that is too dry, or incorrect use of a measuring tool also creating a possibility that the obtained value can be wrongly recorded. Other possible reasons are discussed in the paper. Participation in inter-laboratory comparison programmes is undoubtedly a way to verify and raise the quality of tests performed for concrete mix and hardened concrete, whereas individual analysis of the results allows the laboratory quality system to be improved.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1540 ◽  
Author(s):  
Guangchao Ji ◽  
Tao Ding ◽  
Jianzhuang Xiao ◽  
Shupeng Du ◽  
Jun Li ◽  
...  

Currently, 3D concrete printing technology is not yet able to print ready-mixed concrete with coarse aggregates. Based on an independently developed 3D printing construction equipment system and optimized concrete materials, a 3D concrete printer that can directly print ready-mixed concrete is developed. This paper introduces the whole 3D printing process for one power distribution substation in detail, including the printing equipment, key software, concrete preparation, printing process, and construction inspection. This investigation will provide valuable design and construction experience for the future construction of 3D concrete printing.


2021 ◽  
Vol 11 (11) ◽  
pp. 5294
Author(s):  
Peer Decker ◽  
Ines Zerbin ◽  
Luisa Marzoli ◽  
Marcel Rosefort

Two different intergranular corrosion tests were performed on EN AW-6016 sheet material, an ISO 11846:1995-based test with varying solution amounts and acid concentrations, and a standard test of an automotive company (PV1113, VW-Audi). The average intergranular corrosion depth was determined via optical microscopy. The differences in the intergranular corrosion depths were then discussed with regard to the applicability and quality of the two different test methods. The influence of varying test parameters for ISO 11846:1995 was discussed as well. The determined IGC depths were found to be strongly dependent on the testing parameters, which will therefore have a pronounced influence on the determined IGC susceptibility of a material. In general, ISO 11846:1995 tests resulted in a significantly lower corrosion speed, and the corrosive attack was found to be primarily along grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document