Composition Dependent Fatigue in Antiferroelectric PZST Ceramics Induced by Bipolar Electric Cycling

2005 ◽  
Vol 475-479 ◽  
pp. 1193-1196
Author(s):  
Long Jie Zhou ◽  
Georg Rixecker ◽  
André Zimmermann ◽  
Fritz Aldinger

Bipolar electric fatigue in antiferroelectrics of the lead zirconate titanate stannate ceramics family was investigated. Variations in strain hysteresis loops and damages in microstructure of the materials due to the electric cycling were analyzed. The materials showed symmetric or asymmetric suppression of strain hysteresis loop, normal or diffuse AFE-FE phase transition and intact or damaged microstructure after 5×10-7 cycles, indicating a strong composition dependent fatigue effect and the corresponding mechanism. In general, the antiferroelectric materials exhibited much higher fatigue resistance than ferroelectric ceramics reported previously.

2013 ◽  
Vol 113 (4) ◽  
pp. 044104 ◽  
Author(s):  
A. Peláiz-Barranco ◽  
A. C. Garcia-Wong ◽  
Y. González-Abreu ◽  
J. D. S. Guerra

2014 ◽  
Vol 90 (14) ◽  
Author(s):  
V. Kovacova ◽  
N. Vaxelaire ◽  
G. Le Rhun ◽  
P. Gergaud ◽  
T. Schmitz-Kempen ◽  
...  

1999 ◽  
Vol 14 (7) ◽  
pp. 2940-2944 ◽  
Author(s):  
Fei Fang ◽  
Wei Yang ◽  
Ting Zhu

Lanthanum-modified lead zirconate titanate ferroelectric ceramics (Pb0.96La0.04)(Zr0.40Ti0.60)0.99O3 were synthesized by the conventional powder processing technique. X-ray diffraction experiments revealed that the samples belong to the tetragonal phase with a = b = 0.4055 nm, c = 0.4109 nm, and c/a = 1.013. After being poled, the samples were indented with a 5-kg Vickers indenter, and lateral electric fields of 0.4 Ec, 0.5 Ec, and 0.6 Ec (Ec = 1100 V/mm) were applied, respectively. Field-emission scanning electron microscopy showed that 90° domain switching appeared near the tip of the indentation crack under a lateral electric field of 0.6 Ec. A mechanism of 90° domain switching near the crack tip under an electric field is discussed.


Sign in / Sign up

Export Citation Format

Share Document