Residual Strain Measurement of C/C-SiC Tubes at High Temperature

2006 ◽  
Vol 524-525 ◽  
pp. 665-670 ◽  
Author(s):  
Robert C. Wimpory ◽  
Carsten Ohms ◽  
P. Horňák ◽  
Dimitar Neov ◽  
Anastasius Youtsos

As part of the European project “high and ultrahigh temperature heat exchangers” (HITHEX) the prediction and experimental assessment of the lifetime behaviour, characterisation and qualification of particular CMC materials, including carbon fibre reinforced carbonsiliconcarbides (C/C-SiC), has been executed. Part of the programme of the HITHEX project was the measurement of the strain development within the C/C-SiC tubular specimens from room to high temperature, the results of which are presented here. Residual strains have been determined in several specimens by neutron diffraction at the High Flux Reactor (HFR) of the Joint Research Centre in Petten, The Netherlands. At the HFR two facilities are available for residual strain investigations. Both instruments were utilised in the investigations. The first facility at beam tube HB5, the combined stress and powder diffractometer, employs a constant neutron wavelength of 0.257 nm, and the second facility at HB4, the Large Component Neutron diffraction facility, LCNDF, has a flexible wavelength. The installation of a vacuum furnace has enabled the residual strain measurement of specimens at high temperature on HB4. The furnace had to fulfil three main criteria for the investigation of these specimens; high-temperature, good neutron penetration and negligible oxidation of the specimens. The ceramic specimens, which have outer and inner diameters of 50 and 40 mm, respectively, and a length of 100 mm have been measured to temperatures of up to 1450°C. Measurements were carried out in two directions on the SiC phase of several specimens, i.e. in the radial and tangential (hoop) directions. The implications of these results with respect to the structural integrity assessment of these components at high temperatures are discussed.

Author(s):  
Heikki Keinänen ◽  
Elisabeth Keim ◽  
Paivi Karjalainen-Roikonen ◽  
Sébastien Blasset ◽  
Philippe Gilles ◽  
...  

The purpose of this paper is to disseminate the results of an EURATOM project MULTI-METAL focusing on the structural integrity assessment of dissimilar metal welds. The project started in February 2012 and ended in February 2015. The project is coordinated by VTT with 10 partner organizations from Europe : Technical Research Centre of Finland, Finland (VTT) – Coordinator, AREVA NP, France and Germany (ANP), Commissariat à l’Énergie Atomique et aux energies alternatives, France (CEA), Joint Research Centre of the European Commission, Belgium (JRC), EdF-Energy, United Kingdom (BE), Bay Zoltán Foundation for Applied Research, Hungary (BZF), Electricité de France, France (EDF), TECNATOM, Spain (TEC), Jožef Stefan Institute, Slovenia (JSI), Studsvik Nuclear AB, Sweden (STU). The underlying aim of the project is to provide recommendations for a good practice approach for the integrity assessment (especially testing) of tough dissimilar metal welds as part of overall ductile integrity analyses; this has been presented in the project overview [1]. Experience on typical DMWs concerning manufacturing, residual stresses, flaw assessment and testing have been reviewed. The specimens were taken from mock-ups of welded plates. Three DMWs design variants have been covered: narrow gap DMW with Ni-52, DMW with austenitic steel buttering and a DMW with Nienriched austenitic steel buttering. Mechanical characterization and fracture mechanics testing (CT, SEN(B) and SEN(T) specimens) have been performed. Interpretation of the test has required numerical analysis since the standard ASTM E1820 [2] (CT, SEN(B)) and guidelines dealing with SEN(T) [3][4] are not directly intended to cover DMW. The motivation of the project and its results are generally presented and discussed.


Author(s):  
Paivi Karjalainen-Roikonen ◽  
Elisabeth Keim ◽  
Philippe Gilles ◽  
Sébastien Blasset

The purpose of this paper is to introduce a new EUROATOM project focusing on the structural integrity assessment of dissimilar metal weld. The project started in February 2012 and will last 3 years. The project is coordinated by VTT with 10 partner organizations from Europe: Technical Research Centre of Finland, Finland (VTT) - Coordinator AREVA NP, France and Germany (ANP) Commissariat à l’Énergie Atomique et aux energies alternatives, France (CEA) Joint Research Centre of the European Commission, Belgium (JRC) EdF-Energy, United Kingdom (BE) Bay Zoltán Foundation for Applied Research, Hungary (BZF) Electricité de France, France (EDF) TECNATOM, Spain (TEC) Jožef Stefan Institute, Slovenia (JSI) Studsvik Nuclear AB, Sweden (STU). Within MULTIMETAL, the main objectives are: - Develop a codification for fracture resistance testing in multi-metal specimens. - Develop harmonized procedures for dissimilar metal welds integrity assessment. The underlying aim of the project is to provide recommendations for a good practice approach for the integrity assessment (especially testing) of dissimilar metal welds as part of overall integrity analyses including leak-before-break (LBB) procedures. The project will promote the development of a common understanding for structural integrity assessment of dissimilar metal welds (DMWs) in existing and future nuclear power plants (NPPs) in EU member states. It will provide the technical basis for the development of harmonized European codification for multi-metal components, which is currently non-existing. A trainee program will be finally developed and text book as well as learning materials will be issued. The project will interact with the European Network of Excellence NULIFE and NUGENIA.


Author(s):  
John Sharples ◽  
Elisabeth Keim

NUGENIA, an international non-profit association founded under Belgian legislation and launched in March 2012, is dedicated to nuclear research and development (R&D) with a focus on Generation II and III power plants. NUGENIA is the integrated framework between industry, research and safety organisations for safe, reliable and competitive nuclear power production, and is aimed at running an open innovation marketplace, to promote the emergence of joint research and to facilitate the implementation and dissemination of R&D results. The technical scope of NUGENIA consists of eight technical areas. One of these areas, Technical Area 4, is associated with the structural integrity assessment of systems, structures and components. A brief overview of recent NUGENIA activities in general is provided in this paper and a specific focus is given on developments in relation to Technical Area 4.


Author(s):  
Mustafa Nasser ◽  
Catrin M. Davies ◽  
Kamran Nikbin

Defects in the UK’s AGR nuclear reactors have been historically found in superheater regions of the boilers. These components are fabricated from type 316H austenitic stainless steel and operate in carbon dioxide gas coolant environments under creep conditions, at temperatures up to 550°C. As a result, some components maybe carburised throughout their life resulting in the formation of a hardened outer surface layer. This layer results from interstitial carbon diffusion and is thought to impact on the creep, creep-fatigue and fracture properties of 316H. Carburisation is currently unaccounted for within high temperature structural integrity assessment procedures. It is essential that carburisation and resulting damage mechanisms are well understood in order to accurately predict the failure of components. This paper aims to investigate the effect of AGR gas carburisation on the creep and fracture properties of type 316H stainless steel. Specimens have been preconditioned within a simulated AGR gas environment. The presence of carburisation has been confirmed through metallographic examination, hardness testing and surface analysis techniques. A series of constant load high-temperature creep tests have been conducted on preconditioned specimens. Compared to as-received material, carburised specimens displayed a significant reduction in creep rupture time with cracking of the outer carburised layer initiating creep crack growth. This phenomenon is seen to occur at very low strains and has been confirmed through interrupted creep testing. The substantial reduction in creep rupture time is postulated to result from embrittlement of the carburised material owing to strong precipitation of carbides along grain boundaries. It is concluded that carburisation can lead to a severe reduction in creep rupture life in test conditions; the possible implications of this with regards to plant conditions are discussed.


2010 ◽  
Vol 652 ◽  
pp. 31-36 ◽  
Author(s):  
Yoshihisa Sakaida ◽  
Takanori Serizawa ◽  
M. Kawauchi ◽  
M. Manzanka

A motorcycle transmission gear of chromium-molybdenum steel with 0.2%C was carburized in carrier gas. Carburizing process including heating, carburizing, diffusing and quenching was simulated using elastoplastic finite element method. The carbon content, hardness, residual strain and residual stress fields of gear were analyzed. The unstressed lattice plane spacing and residual strains of the interior near the internal spline of gear were experimentally measured by synchrotron x-ray and neutron diffraction methods. As a result, the analyzed carbon content and hardness gradients of gear accorded with the experimental results. The radial, hoop and axial directions of cylindrical gear were found to be not always principal axes of residual stress field. On the other hand, the analyzed residual strains in the radial, hoop and axial directions of gear slightly discorded with the experimental results. Although correlation between the measured three strains was similar to that of the weighted average of analyzed strains, residual strain and stress fields of motorcycle transmission gear could not be accurately predicted at the present finite element analysis. It was concluded that carbon diffusion phenomenon and resultant hardening could be analyzed by the finite element method, and the actual interior residual strain and stress fields should be nondestructively measured by neutron diffraction method.


Author(s):  
Kenta Shimomura ◽  
Takashi Onizawa ◽  
Shoichi Kato ◽  
Masanori Ando ◽  
Takashi Wakai

This paper describes the formulation of material characteristics of austenitic stainless steels at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants. After the severe accident in Fukushima dai-ichi nuclear power plants, it has been supposed to be very important not only to prevent the occurrence of abnormal conditions, i.e. from the first to the third layer safety, but also to prevent the expansion of the accident conditions, i.e. the fourth layer safety[1] [2]. In order to evaluate the structural integrity under the severe accident condition, material characteristics which can be used in the numerical analyses, such as finite element analysis, were required [3] [4]. However, there were no material characteristics applicable to the structural integrity assessment at extremely high temperature. Therefore, a series of tensile and creep tests was performed for austenitic stainless at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants, namely up to 1000 °C. Based on the acquired data from the tests, monotonic stress-strain equation and creep rupture equation applicable to the structural analysis at extremely high temperature, up to 1000 °C were formulated. As a result, these formulae make it possible to conduct the structural integrity assessment using numerical analysis techniques, such as finite element method.


Sign in / Sign up

Export Citation Format

Share Document