Fuell Cell and Hydrogen Vehicles - State of the Art and Challenges for Improved Materials

2007 ◽  
Vol 539-543 ◽  
pp. 1321-1326 ◽  
Author(s):  
Peter Treffinger ◽  
Andreas Brinner ◽  
Roland Schöll ◽  
Horst E. Friedrich

Fuel cell vehicles should be further improved. Key issues are cost reduction; higher power density of the primary energy converter, the fuel cell; wider operation ranges and improvement of operation parameters, e.g. higher operation temperature and starting ability in freezing conditions. Using advanced materials and construction principles is a key factor by meeting these requirements. The paper gives a short introduction to the technology of fuel cell vehicles and the most prominent fuel cell type for traction applications, the polymer-electrolyte-membrane fuel cell (PEFC). Progress in material development of a core component of the PEFC, the bipolar plate is described. In the second part of the paper some ideas are presented, in which way material research could help to enable suitable on-board storages for hydrogen. Namely, a new approach to design compressed gas storages and new developments in materials for solid state hydrogen storage are brought to attention.

2014 ◽  
Vol 699 ◽  
pp. 689-694 ◽  
Author(s):  
Mohd Zulkefli Selamat ◽  
Mohd Shakir Ahmad ◽  
Mohd Ahadlin Mohd Daud ◽  
Musthafa Mohd Tahir ◽  
Safaruddin Gazali Herawan

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is an alternative energy system that has been verified with great potential for high power density, durability and cost effectiveness. Since the bipolar plate is the key component in PEMFC, the component must operate with multifunction and have a balance of properties, essentially well in both electrical and mechanical properties. At present, many different materials have been tested to be applied for bipolar plate in order to fulfill the balance in each property. In this work, the different material is tested and observed. Polypropylene (PP) is used as a binder material, Graphite (Gr) is used as a main filler and Carbon Black (CB), Iron (Fe) and Nickel (Ni) as the second filler. This composite is produced through compression molding and the effect of different filler material loading on the properties such as electrical conductivity, flexural strength, bulk density and shore hardness are observed. The result showed the increasing of electrical conductivity as the increased the CB and Fe loading. But for Ni, the result showed the decreasing of electrical conductivity as the loading of Ni has been increased. The targeted value also achieved for some certain degree of filler loading.


2013 ◽  
Vol 291-294 ◽  
pp. 614-617 ◽  
Author(s):  
Nur Fatin Ab. Rahman ◽  
Loh Kee Shyuan ◽  
Abu Bakar Mohamad ◽  
Abdul Amir Hassan Kadhum

Tremendous efforts are being made to produce polymer electrolyte membrane (PEM) for fuel cell using advanced materials in order to replace Nafion due to the high costs and its complicated synthesis procedures. One of the efforts include an extensive research on natural polymer to produce biopolymer based electrolyte membranes with desirable properties such as high proton conductivity, as well as good chemical and thermal stabilities. The examples of biopolymer that have been used are polysaccharide (e.g. cellulose, starch and glycogen), chitin and chitosan. This paper presents an overview of the types of biopolymer used to produce a PEM, comprised also their chemical and physical properties, and its performances in fuel cell applications.


2010 ◽  
Vol 113-116 ◽  
pp. 2255-2261
Author(s):  
Dong Ming Zhang ◽  
Lu Guo ◽  
Liang Tao Duan ◽  
Zai Yi Wang

In the present study, we try to prepare hydrophobic film coated on stainless steel as the bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Magnetron sputtering (MS) was adoped to prepare the Cr3Ni2/Cr2N multi-layer coated on stainless steel. The corrosion resistance and electrical conductance of the coated substrate were tested. The water contact angles were measured. The film exhibits improved corrosion resistance and electrical conductance. The corrosion current is 0.58µA.cm-2 and the contact resistance at 240N.cm-2 is 8.5mΩ.cm2. Meanwhile, it is a kind of hydrophobic film with water contact angle of 107o. The performance shows strong dependance on microstructural characteristics. The nano-protrudes on the SS304/Cr3Ni2/Cr2N surface result in the film with hydrophobic property, just like the effect of lotus surface.


Author(s):  
Heli Wang ◽  
Glenn Teeter ◽  
John A. Turner

Austenitic 349 stainless steel was nitrided in an NH3 plasma. A low interfacial contact resistance was obtained with the nitrided steel. Glancing angle X-ray diffraction suggests that the nitrided layer is very thin and possibly amorphous. X-ray photoelectron spectroscopy (XPS) studies show that the nitrided layer is composed of mixed oxides and nitrides of Fe3+ and Cr3+. Contaminations of V and Sn were also observed, though their influence on the as-nitrided surface conductivity is not clear. The nitrided samples were investigated in a simulated polymer electrolyte membrane fuel cell (PEMFC) environment, and showed excellent corrosion resistance. The XPS depth profile indicated that the passive film, which formed on the plasma-nitrided steel in the PEMFC anode environment, is composed of mixed oxides and nitrides, in which chromium oxide/nitride dominates the surface chemistry. No V or Sn was detected on the surface after the polarization tests. For the PEMFC bipolar plate application, nitridation in NH3 plasma is a promising surface treatment approach, though more research is needed to investigate the influence of the plasma density and substrate bias on the surface conductivity and performance of the nitrided steel in PEMFC environments.


Sign in / Sign up

Export Citation Format

Share Document