Hf Modified NiAl Bond Coat for Thermal Barrier Coating Application

2007 ◽  
Vol 546-549 ◽  
pp. 1777-1780 ◽  
Author(s):  
Li Dong Sun ◽  
Hong Bo Guo ◽  
He Fei Li ◽  
Sheng Kai Gong

The Hf doped NiAl coatings were co-evaporated and co-deposited onto the superalloy substrate by electron beam physical vapor deposition (EB-PVD). During heat-treatment, HfO2 was formed on the NiAl coatings. And, Hf enriched at the interface between the coating and the interdiffusion zone, which could prevent outward diffusion of elements in the substrate. The NiAl coating doped with 0.5% Hf effectively improved the high temperature oxidation resistance compared to the Hf free NiAl coating and the high Hf content coating. Also, the addition of Hf to the coating contributed to enhancing the adherence of TGO layer to coating.

2002 ◽  
Vol 124 (2) ◽  
pp. 229-234 ◽  
Author(s):  
U. Schulz ◽  
K. Fritscher ◽  
C. Leyens ◽  
M. Peters

The paper addresses the effect of processing parameters on microstructure and lifetime of electron beam physical vapor deposition, partially yttria-stabilized zirconia (EB-PVD PYSZ) coatings deposited onto NiCoCrAlY-coated Ni-base superalloys. In particular, the formation of a thermally grown oxide layer, an equi-axed zone, and various columnar arrangements of the highly textured PYSZ layers are discussed with respect to processing conditions. Three different microstructures were cyclically tested at 1100°C. The intermediate columnar structure was superior with respect to cyclic life times to a fine and to a coarse columnar structure which was mainly attributed to differences in the elastic properties. The effect of PYSZ microstructure on hot corrosion behavior of the thermal barrier coating (TBC) system at 950°C is briefly discussed.


2008 ◽  
Vol 23 (9) ◽  
pp. 2382-2392 ◽  
Author(s):  
M. Tanaka ◽  
Y.F. Liu ◽  
S.S. Kim ◽  
Y. Kagawa

A pushout test method was used to quantify effect of thermal cycling temperatures on the delamination toughness of an electron beam physical vapor deposited thermal barrier coating (EB-PVD TBC). The delamination toughness, Γi, was related to the maximum thermal cycling temperature, Th, equal to 1000, 1025, 1050, and 1100 °C. The measured delamination toughness varied from 9 to 95 J/m2. At Th = 1000 °C, Γi attained a maximum value, larger than that of the as-deposited sample and decreasing with increased Th. During the thermal cycling tests, the thermally grown oxide (TGO) was formed between the TBC and the bond coat deposited onto the superalloy substrate. Inside the TGO layer, mixture of Al2O3 and ZrO2 oxides was observed close to the TBC side with nearly pure Al2O3 phases close to the bond-coat side. During the pushout test, delamination occurred at the interface of the mixture and pure Al2O3 layer with an exception for Th = 1100 °C specimens where delamination also occurred at the interface between the TGO and bond-coat layers. The effect of thermal cycling temperatures on the delamination toughness is discussed in terms of the microstructural change and delamination behavior.


2006 ◽  
Vol 522-523 ◽  
pp. 267-276 ◽  
Author(s):  
Kunihiko Wada ◽  
Yutaka Ishiwata ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Several kinds of thermal barrier coatings (TBCs) deposited by electron beam physical vapor deposition (EB-PVD) were produced as a function of electron beam power in order to evaluate their strain tolerance. The deposition temperatures were changed from 1210 K to 1303 K depending on EB power. In order to evaluate strain tolerances of the EB-PVD/TBCs, a uniaxial compressive spallation test was newly proposed in this study. In addition, the microstructures of the layers were observed with SEM and Young’s moduli were measured by a nanoindentation test. The strain tolerance in as-deposited samples decreased with an increase in deposition temperature. In the sample deposited at 1210 and 1268 K, high-temperature aging treatment at 1273 K for 10 h remarkably promoted the reduction of the strain tolerance. The growth of thermally grown oxide (TGO) layer generated at the interface between topcoat and bondcoat layers was the principal reason for this strain tolerance reduction. We observed TGO-layer growth even in the as-deposited sample. Although the thickness of the initial TGO layer in the sample deposited at high temperature was thicker, the growth rate during aging treatment was smaller than those of the other specimens. This result suggests that we can improve the oxidation resistance of TBC systems by controlling the processing parameters in the EB-PVD process.


Sign in / Sign up

Export Citation Format

Share Document