A Study on Superplastic Behavior and Microstructural Evolution of an Isothermally Forged TiAl Based Alloy

2007 ◽  
Vol 551-552 ◽  
pp. 463-466
Author(s):  
Hua Ding ◽  
D. Song ◽  
Z.Q. Pan ◽  
C.P. Zhang ◽  
J.Z. Cui

Superplastic behavior and microstructure evolution of an isothermally forged Ti-47Al-1Cr-1V-1.5Mo-1.5Nb alloy were investigated. The results showed that the strain rate sensitivity index, m, increased with strain during the superplastic deformation, and it kept as a constant when the strain reached a certain value. The maximum value of m was 0.53 at 900°C and strain rate of 5x10-4 s-1. During the superplastic deformation, the as received material with lamellae and subgrains were refined due to dynamic recrystallization, and small and equiaxed grains with high angle boundaries were formed, creating a better condition for superplastic deformation. Grain boundary sliding and boundary migration were the main superplastic deformation mechanisms and slip and twining were also very important during the superplastic deformation of the alloy.

2011 ◽  
Vol 117-119 ◽  
pp. 1113-1116
Author(s):  
Wen Jie Cheng ◽  
Fu Xiao Chen

Using tensile test of ZK60 magnesium alloy, the superplastic flow behavior was studied. The deformation temperature was set as 280°C, 310°C,340°C, 370°C and 400°C while strain rate was 1×10-1s-1, 1×10-2s-1, 1×10-3s-1 and 1×10-4s-1. The results showed that the perfect superplastic behavior was presented at 370°C and =1×10-4s-1 and the maximum elongation could be 133.7%. The biggest factor of strain rate sensitivity was 0.62. The microstructure of the fracture was analyzed used SEM and the results showed that the main deformation mechanism of ZK60 magnesium alloy was grain boundary sliding.


1990 ◽  
Vol 196 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth

ABSTRACTConcurrent grain growth, and in particular, dynamic grain growth, was observed to take place during superplastic deformation of Y-TZP. As a result of this concurrent grain growth, the measured strain rate sensitivity was found to be lower than that measured under constantstructure conditions. In the present paper, data obtained from the superplastic deformation of YTZP under constant-structure conditions are presented. It is demonstrated that the strain rate sensitivity values are generally higher than 0.5, when measured from the grain size-compensated data; this result suggests a grain boundary sliding mechanism. Microstructures from samples prior to and after superplastic deformation reveal grains which are essentially equiaxed; this observation is also consistent with a grain boundary sliding mechanism. Both high-resolution images of grain boundary triple points using transmission electron microscopy, and fracture surface studies using Auger electron spectroscopy and X-ray photoelectron spectroscopy indicate that there is no evidence for the presence of glassy phases at grain boundaries in Y-TZP.


2012 ◽  
Vol 735 ◽  
pp. 26-30 ◽  
Author(s):  
K. Anantha Padmanabhan ◽  
Herbert Gleiter

An earlier proposal is generalized to explain superplasticity in different classes of materials and grain size ranges. A definition of “superplasticity” as due to a unique physical mechanism, rather than in terms of extreme elongations and/ or strain rate sensitivity index, m, being more than or equal to 0.30 emerges.


2012 ◽  
Vol 735 ◽  
pp. 146-151 ◽  
Author(s):  
Andrey V. Kuznetsov ◽  
Dmitry G. Shaisultanov ◽  
Nikita Stepanov ◽  
Gennady A. Salishchev ◽  
Oleg N. Senkov

An AlCoCrCuFeNi high entropy alloy was multiaxially isothermally forged at 950°C to produce a fine equiaxed structure with the average grain/particle size of ~1.5 µm. The forged alloy exhibited superplastic behavior in the temperature range of 800-1000°C. For example, during deformation at a strain rate of 10-3 s-1, tensile ductility increased from 400% to 860% when the temperature increased from 800°C to 1000°C. An increase in strain rate from 10-4 to 10-2 s-1 at T = 1000°C did not affect ductility: elongation to failure was about 800%. The strain rate sensitivity of the flow stress was rather high, m = 0.6, which is typical to the superplastic behavior. The equiaxed morphology of grains and particles retained after the superplastic deformation, although some grain/particle growth was observed.


2012 ◽  
Vol 735 ◽  
pp. 93-100
Author(s):  
Alexander J. Carpenter ◽  
Anthony J. Barnes ◽  
Eric M. Taleff

Complex sheet metal components can be formed from lightweight aluminum and magnesium sheet alloys using superplastic forming technologies. Superplastic forming typically takes advantage of the high strain-rate sensitivity characteristic of grain-boundary-sliding (GBS) creep to obtain significant ductility at high temperatures. However, GBS creep requires fine-grained materials, which can be expensive and difficult to manufacture. An alternative is provided by materials that exhibit solute-drag (SD) creep, a mechanism that also produces elevated values of strain-rate sensitivity. SD creep typically operates at lower temperatures and faster strain rates than does GBS creep. Unlike GBS creep, solute-drag creep does not require a fine, stable grain size. Previous work by Boissière et al. suggested that the Mg-Y-Nd alloy, essentially WE43, deforms by SD creep at temperatures near 400°C. The present investigation examines both tensile and biaxial deformation behavior of ElektronTM 43 sheet, which has a composition similar to WE43, at temperatures ranging from 400 to 500°C. Data are presented that provide additional evidence for SD creep in Elektron 43 and demonstrate the remarkable degree of biaxial strain possible under this regime (>1000%). These results indicate an excellent potential for producing complex 3-D parts, via superplastic forming, using this particular heat-treatable Mg alloy.


Sign in / Sign up

Export Citation Format

Share Document