maximum elongation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ziwei Ge ◽  
Hongyan Liu

Abstract Rockfall triggered by earthquakes can cause severe infrastructure losses and even fatalities. The flexible protective barrier is an efficient rockfall protection system that has been widely used against rockfall. This studyproposed a novel approach to simulate a field test of rockfall impacting the flexible barrier, and the simulation results showed an excellent match with the field test results. Based on this approach, the seismic loading was applied to the numerical model, and four types of seismic loading were adopted, e.g., non-seismic, x-directional seismic, y-directional seismic, and z-directional seismic. This study aims at investigating the dynamic behavior of the flexible protective barrier under different seismic loading during the rockfall impact process. The following findings can be obtained from the simulation results. First of all, the seismic loading can increase the maximum elongation and decrease the final elongation of the flexible protective barrier comparing to non-seismic loading. Second, the largest deformation area of the protective barrier is at the diagonal position when x-directional seismic loading was applied, which is at the vertical bisector position when y-directional and z-directional seismic loading was applied. Third, the maximum elongation of the protective barrier decreased with the increasing seismic wave period. But in general, the amplitude and period of seismic waves have negligible effects on the elongation, maximum normal stress, and maximum shear stress of the flexible protective barrier.


2021 ◽  
Vol 11 (7) ◽  
pp. 1223-1230
Author(s):  
Ting Luo ◽  
Chengdong Yang ◽  
Kang Zhang ◽  
Yi Lin ◽  
Fei Cheng ◽  
...  

The main purpose of this paper is to synthesize a novel esterified starch with an alicyclic structure. Herein, methyltetrahydrophthalic anhydride (MeTHPA), an alicyclic anhydride, was used to synthesize esterified corn starch (CS) with different degrees of substitution (DS) by a wet method. Compared with CS, the crystallinity and thermal degradation temperature of MeTHPA esterified CS (MeCS) decreased, while the hydrophobicity and light transmittance of MeCS films increased. The esterification modification significantly improved the toughness of the starch film. Between CS and MeCS films, the 15% Me/CS film shows a maximum elongation at break of 24.2% and a tensile strength of 8.0 MPa. Furthermore, 15% Me/CS was blended with CS as a sizing agent for polyester/cotton blended yarns and showed significantly increased adhesion to the blended yarns. Hence, the CS blended MeCS has a potential application in wrap sizing.


2021 ◽  
pp. 036354652110095
Author(s):  
Danko Dan Milinkovic ◽  
Christian Fink ◽  
Christoph Kittl ◽  
Petri Silanpää ◽  
Elmar Herbst ◽  
...  

Background: In contrast to the majority of existing techniques for reconstruction of the medial patellofemoral ligament (MPFL), the technique described in this article uses the adductor magnus muscle tendon to gain a flat, broad graft, leaving its distal femoral insertion intact, and does not require drilling within or near the femoral physis. It also allows for soft tissue patellar fixation and could facilitate anatomic MPFL reconstruction in skeletally immature patients. Purpose: To evaluate the anatomic and structural properties of the native MPFL and the adductor tendon (AT), followed by biomechanical evaluation of the proposed reconstruction. Study Design: Descriptive laboratory study. Methods: The morphological and topographical features of the AT and MPFL were evaluated in 12 fresh-frozen cadaveric knees. The distance between the distal insertion of the AT on the adductor tubercle and the adductor hiatus, as well as the desired length of the graft, was measured to evaluate this graft’s application potential. Load-to-failure tests were performed to determine the biomechanical properties of the proposed reconstruction construct. The construct was placed in a uniaxial testing machine and cyclically loaded 500 times between 5 and 50 N, followed by load to failure, to measure the maximum elongation, stiffness, and maximum load. Results: The mean ± SD length of the AT was 12.6 ± 1.5 cm, and the mean distance between the insertion on the adductor tubercle and adductor hiatus was 10.8 ± 1.3 cm, exceeding the mean desired length of the graft (7.5 ± 0.5 cm) by 3.3 ± 0.7 cm. The distal insertion of the AT was slightly proximal and posterior to the insertion of the MPFL. The maximum elongation after cyclical loading was 1.9 ± 0.4 mm. Ultimately, the mean stiffness and load to failure were 26.2 ± 7.6 N/mm and 169.7 ± 19.2 N, respectively. The AT graft failed at patellar fixation in 2 of the initially tested specimens and at the femoral insertion in the remaining 10. Conclusion: The described reconstruction using the AT has potential for MPFL reconstruction. The AT graft presents a graft of significant volume, beneficial anatomic topography, and adequate tensile properties in comparison with the native MPFL following the data from previously published studies. Clinical Relevance: Given its advantageous anatomic relationship as an application that avoids femoral drilling and osseous patellar fixation, the AT may be considered a graft for MPFL reconstruction in skeletally immature patients.


2021 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Truong An Nguyen ◽  
Manh Hung Le ◽  
Manh Tien Nguyen ◽  
Quoc Viet Pham

The goal of this work was to study the effects of cyclic close die forging on the microstructure and mechanical properties of Ti–5Al–3Mo–1.5V alloy, which was produced in Vietnam. The factors considered include the deformation temperature (Td), at 850 °C, 900 °C, and 950 °C, and the number of cycles performed while forging in closed die (n)— 3, 6, and 9 times. The responses measured were average grain diameter (dtb) and tensile stress (σb). The results indicate that the smallest average grain size of 1 μm could be obtained at Td = 900 °C, n = 9 times and the tensile stresses were enhanced. The experimental results we obtained also suggest that the microstructure of Ti–5Al–3Mo–1.5V alloy is accordant for superplastic deformation. The superplastic forming of this alloy can show maximum elongation of 1000% or more.


Author(s):  
R Piradhiba ◽  
Evan A Clement ◽  
Navaneetha Nambi ◽  
S Veerasankar ◽  
S Madhumitra ◽  
...  

Introduction: Orthodontic elastics are a very significant tool in orthodontics, as it is the most commonly used force delivering unit. Temperature plays a key role in the amount of force that elastics are able to produce. Hence, there is a need to evaluate the influence of storage temperature on the properties of orthodontic elastics before its clinical use. Aim: To evaluate the influence of different storage temperature of latex orthodontic elastics. Materials and Methods: This cross-sectional study was conducted at Sathyabama Dental College and Hospital, Chennai, in November 2019. Sample of 40 latex orthodontic elastics (TP Orthodontics, medium force, standard size of 3/16′′) were divided into four groups with 10 elastics each, based on their storage temperature and stored in closed plastic packages. Group 1 was kept as a Control group and Group 2, Group 3 and Group 4 were stored in three Incubators under the specified storage temperatures such as 26-28°C, 4-8°C, 37°C respectively. The elastics were stretched and their forces measured in six progressive increases of 100% of their inner diameter, starting at a level of 100% stretching, with the Universal Testing Machine, Instron. The samples were also tested for Maximum Stress (MPa), Maximum Force (N), Maximum Elongation (%) and Break Distance (mm). Data were analysed using Statistical Package for the Social Science (SPSS) software version 16.0, one-way Analysis of Variance (ANOVA) and post-hoc test. Results: On evaluating the stress at 100%, 200%, 300%, 400%, 500%, 600% of strain, there was no statistically significant difference between the groups. Maximum Stress MPa was found to be 24.12±3.32, 25.12±3.42, 23.3±3.41, 23.97±3.50 for group1, group 2, group 3 and group 4 respectively. Maximum Elongation (%) was found to be 1369.0±25.108, 1364.0±23.190, 1359.0±35.103, 1363.0±34.657 for group 1, group 2, group 3 and group 4, respectively. Break Distance (mm) was found to be 68.48±1.267, 68.28±1.267, 67.87±1.77 and 68.19±1.727 for group1, group 2, group 3 and group 4, respectively. And none of the parameters tested showed statistical significance between the four groups. Conclusion: Latex elastics may be stored under any of the conditions tested in the present study over a period of one month, since different storage temperatures over a period of one month did not interfere in their mechanical properties.


Author(s):  
Chenglong Dong ◽  
Hailong Fan ◽  
Feng Tang ◽  
Xiaobin Gao ◽  
Kai Feng ◽  
...  

The triple-crosslinked hydrogel constructed through a crosslinking hierarchy exhibits significant increase in stiffness but without sacrificing the maximum elongation.


2020 ◽  
Vol 1012 ◽  
pp. 62-66
Author(s):  
Kleber Vaccioli ◽  
Samuel Marcio Toffoli ◽  
Ticiane Sanches Valera

The objective of this work was to evaluate the influence of the order of sulfur addition on the mechanical properties of vulcanized natural rubber compounds. The addition of sulfur was carried out by two methodologies: (I) sulfur was added at the beginning of the mastication process, and (II) sulfur was added at the end of the mixing process. The compounds were obtained in open cylinder, and vulcanized in a press at 150°C. The vulcanization parameters were determined by rheometry, where as the mechanical properties were evaluated by testing samples for their tensile strength, tear strength, resilience, and Shore-A hardness. The dimensional stability of the vulcanized samples was also evaluated experimentally, by comparing specimens not heat-treated to those submitted to 100°C for 4 hours. Comparing the results of method (I) to method (II), the results, indicate that the addition of sulfur at the beginning of the mastication process (method I) yielded increases of 20 and 11% in tensile strength and tear strength, respectively, followed by a 9% increase in hardness, and 6% in resilience, without significant losses in maximum elongation. The dimensional stability test showed a reduction of 75% in the contraction for the vulcanized samples which had sulfur addition at the beginning of the mastication process of the unvulcanized NR rubber.


2020 ◽  
Vol 100 (3) ◽  
pp. 314-326 ◽  
Author(s):  
Yun Kong ◽  
Katherine Schiestel ◽  
Youbin Zheng

To clarify detailed patterns of responses to blue light associated with decreasing phytochrome activity, the growth and morphology traits of arugula, cabbage, mustard, and kale microgreens were compared under the treatments: (1) R, pure red light; (2) B, pure blue light; (3) BRF0, (4) BRF2, (5) BRF4, and (6) BRF6: unpure blue lights created by mixing B with low-level (6%) R, and further adding 0, 2, 4, and 6 μmol m−2 s−1 of far-red light, respectively. The calculated phytochrome photostationary state (PPS) value, indicating phytochrome activity, gradually decreased in the order of R (0.89), BRF0 (0.69), BRF2 (0.65), BRF4 (0.63), BRF6 (0.60), and B (0.50). Generally, the elongation growth (including stem extension rate, hypocotyl length, or petiole length) under blue lights increased with the decreasing PPS values, showing the highest and lowest sensitivity for arugula and mustard, respectively. However, the elongation promoted by blue lights gradually became saturated once the PPS values decreased below 0.60, a level which deactivates phytochrome. Other plant traits, such as biomass allocation and plant color, varied with increasing shade-avoidance responses to blue lights with decreasing PPS values relative to R, and these traits reached saturation at a similar PPS value as elongation. The response sensitivity was highest in elongation growth for arugula and cabbage, and highest in plant color for kale and mustard. This suggests that deactivated phytochrome contributes to the maximum elongation promotion as a shade-avoidance response induced by blue light, although the response sensitivity varies with plant traits and species.


Sign in / Sign up

Export Citation Format

Share Document