Parameter Identification of Thermal Visco-Plastic Model Considering Dynamic Recrystallization

2007 ◽  
Vol 561-565 ◽  
pp. 1869-1874
Author(s):  
Quan Lin Jin ◽  
Yan Shu Zhang

A hybrid global optimization method combining the Real-coded genetic algorithm and some classical local optimization methods is constructed and applied to develop a special program for parameter identification. Finally, the parameter identification for both 26Cr2Ni4MoV steel and AZ31D magnesium alloy is carried out by using the program. A comparison of deformation test and numerical simulation shows that the parameter identification and the obtained two sets of material parameters are all available.

2015 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
G. V. Gonzales ◽  
E. D. Dos Santos ◽  
L. R. Emmendorfer ◽  
L. A. Isoldi ◽  
E. S. D. Estrada ◽  
...  

he problem study here is concerned with the geometrical evaluation of an isothermal Y-shaped cavity intruded into conducting solid wall with internal heat generation. The cavity acts as a sink of the heat generated into the solid. The main purpose here is to minimize the maximal excess of temperature (θmax) in the solid. Constructal Design, which is based on the objective and constraints principle, is employed to evaluate the geometries of Y-shaped cavity. Meanwhile, Simulated Annealing (SA) algorithm is employed as optimization method to seek for the best shapes. To validate the SA methodology, the results obtained with SA are compared with those achieved with Genetic Algorithm (GA) and Exaustive Search (ES) in recent studies of literature. The comparison between the optimization methods (SA, GA and ES) showed that Simulated Annealing is highly effective in the search for the optimal shapes of the studied case.


2010 ◽  
Vol 37 (5) ◽  
pp. 1203-1208
Author(s):  
肖光宗 Xiao Guangzong ◽  
龙兴武 Long Xingwu ◽  
张斌 Zhang Bin ◽  
吴素勇 Wu Suyong ◽  
赵洪常 Zhao Hongchang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Seungchul Lee ◽  
Jun Ni

This paper presents wafer sequencing problems considering perceived chamber conditions and maintenance activities in a single cluster tool through the simulation-based optimization method. We develop optimization methods which would lead to the best wafer release policy in the chamber tool to maximize the overall yield of the wafers in semiconductor manufacturing system. Since chamber degradation will jeopardize wafer yields, chamber maintenance is taken into account for the wafer sequence decision-making process. Furthermore, genetic algorithm is modified for solving the scheduling problems in this paper. As results, it has been shown that job scheduling has to be managed based on the chamber degradation condition and maintenance activities to maximize overall wafer yield.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hongbing Lian ◽  
András Faragó

In virtual private network (VPN) design, the goal is to implement a logical overlay network on top of a given physical network. We model the traffic loss caused by blocking not only on isolated links, but also at the network level. A successful model that captures the considered network level phenomenon is the well-known reduced load approximation. We consider here the optimization problem of maximizing the carried traffic in the VPN. This is a hard optimization problem. To deal with it, we introduce a heuristic local search technique called landscape smoothing search (LSS). This study first describes the LSS heuristic. Then we introduce an improved version called fast landscape smoothing search (FLSS) method to overcome the slow search speed when the objective function calculation is very time consuming. We apply FLSS to VPN design optimization and compare with well-known optimization methods such as simulated annealing (SA) and genetic algorithm (GA). The FLSS achieves better results for this VPN design optimization problem than simulated annealing and genetic algorithm.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012075
Author(s):  
Xi Feng ◽  
Yafeng Zhang

Abstract An improved immune genetic algorithm is used to design and optimize the wing structure parameters of a competition aircraft. According to the requirements of aircraft design, multi-objective optimization index is established. On this basis, the basic steps of using immune algorithm to optimize the main design parameters of aircraft wing structure are proposed, and the optimization of the wing parameters of a competition aircraft is used as an example for simulation calculation. The design variables in the optimization are the size of the wing components, and the optimization goal is to minimize the weight of the wing and the maximum deformation of the wing structure. Research shows that compared with traditional optimization methods; the improved immune genetic algorithm is a very effective optimization method. At the same time, a prototype is made to check the validity and feasibility of the design. Flight test results show that the optimization method is very effective. Although the method is proposed for competition aircraft, it is also applicable to other types of aircraft.


Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jing-an Feng ◽  
Xiao-qi Tang ◽  
Wei-bing Wang ◽  
Rui Ying ◽  
Ting Zhang

To achieve efficient separation of calcium hydroxide and impurities in carbide slag by using hydrocyclone, the physical granularity property of carbide slag, hydrocyclone operation parameters for slurry concentration, and the slurry velocity inlet are designed to be optimized. The optimization methods are combined with the Design of Experiment (DOE) method and the Computational Fluid Dynamics (CFD) method. Based on Design Expert software, the central composite design (CCD) with three factors and five levels amounting to five groups of 20 test responses was constructed, and the experiments were performed by numerical simulation software FLUENT. Through the analysis of variance deduced from numerical simulation experiment results, the regression equations of pressure drop, overflow concentration, purity, and separation efficiencies of two solid phases were, respectively, obtained. The influences of factors were analyzed by the responses, respectively. Finally, optimized results were obtained by the multiobjective optimization method through the Design Expert software. Based on the optimized conditions, the validation test by numerical simulation and separation experiment were separately proceeded. The results proved that the combined method could be efficiently used in studying the hydrocyclone and it has a good performance in application engineering.


Sign in / Sign up

Export Citation Format

Share Document