An Experimental Study of the Characteristics of Environment-Friendly Construction Materials by Recycling Sewage Sludge Ash

2008 ◽  
Vol 569 ◽  
pp. 297-300
Author(s):  
Jae Ik Lee ◽  
Byung Wan Jo ◽  
Yeong Seok Yoo ◽  
Kyeong Ho Cheon

As a basic stage for developing new construction material utilizing sewage sludge ash, this study is identified by specific material characteristics through XRD, SEM, uniaxial compressive strength, porosity, and the drying shrinkage by manufacturing mortar with sewage sludge ash. The average drying shrinkage of sewage sludge ash mortar aged 7 days showed 88% of the strain of the one aged 28 days. The porosity of sewage sludge ash mortar was about 7~10%. The more quick lime and blast furnace slag were added, the less porosity appeared.

2018 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
NURUL NAZIERAH MOHD YUSRI ◽  
KARTINI KAMARUDDIN ◽  
HAMIDAH MOHD SAMAN ◽  
NURAINI TUTUR

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


2020 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste. 


2018 ◽  
Vol 15 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


2016 ◽  
Vol 75 (5) ◽  
pp. 1251-1260 ◽  
Author(s):  
Raimon Parés Viader ◽  
Pernille Erland Jensen ◽  
Lisbeth M. Ottosen ◽  
Tobias P. Thomsen ◽  
Jesper Ahrenfeldt ◽  
...  

Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.


2021 ◽  
Author(s):  
Arun Kumar Prabhakar ◽  
Padmaja Krishnan ◽  
Serina Siew-Chen Lee ◽  
Chin Sing Lim ◽  
Anjaneya Dixit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document