Pure and Ca-doped LaCoO3 Nanopowders: Sol-Gel Synthesis, Characterization and Magnetic Properties

2004 ◽  
Vol 848 ◽  
Author(s):  
Lidia Armelao ◽  
Davide Barreca ◽  
Gregorio Bottaro ◽  
Andrea Caneschi ◽  
Claudio Sangregorio ◽  
...  

ABSTRACTThis work is focused on the sol-gel synthesis of pure and Ca-doped LaCoO3 nanopowders. The samples were prepared starting from methanolic solutions of cobalt (II) acetate (Co(CH3COO)2·4H2O), lanthanum (III) nitrate (La(NO3)3·6H2O) and calcium (II) acetate (Ca(CH3COO)2·H2O). After solvent evaporation, the obtained powders were dried under vacuum and subsequently treated in air up to 1273 K. The system evolution under thermal annealing was studied by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), while the chemical composition was analyzed by X-ray Photoelectron (XPS) and X-ray Excited Auger electron (XE-AES) spectroscopies. The temperature and field dependence of the magnetic properties of the Ca-doped samples were investigated, and compared to those of the corresponding pure LaCoO3 powders.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sanja Ćulubrk ◽  
Željka Antić ◽  
Vesna Lojpur ◽  
Milena Marinović-Cincović ◽  
Miroslav D. Dramićanin

Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd2Ti2O7pyrochlore nanopowders. According to Gd2Ti2O7precursor gel thermal analysis a temperature of 840°C is identified for the formation of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron microscopy shows that investigated Eu3+-doped Gd2Ti2O7nanopowders consist of compact, dense aggregates composed entirely of nanoparticles with variable both shape and dimension. The influence of Eu3+ions concentration on the optical properties, namely, photoluminescence emission and decay time, is measured and discussed. Emission intensity as a function of Eu3+ions concentration shows that Gd2Ti2O7host can accept Eu3+ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3 at.% (~2.7 ms) and experience decrease at higher concentrations (2.4 ms for 10 at.% Eu3+). Moreover, photoluminescent spectra and lifetime values clearly revealed presence of structural defects in sol-gel derived materials proposing photoluminescent spectroscopy as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2013 ◽  
Vol 385-386 ◽  
pp. 7-10
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown double-layered films were synthesized with a FePt: C composite layer on top of continuous FePt underlayer. The thickness of FePt was changed from 2 nm to 14 nm. Nanostructures, crystalline orientations and the effect of FePt underlayer on the ordering, orientation and magnetic properties of the thin films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). XRD confirmed the formation of the ordered L10phase for 5 nm FePt: C film with FePt thickness decreased to 5 nm. TEM studies of FePt:C composite L10phase and double-layered deposition FePt:C/FePt were presented.


2011 ◽  
Vol 295-297 ◽  
pp. 1414-1417
Author(s):  
Zhi Fang Zhang ◽  
Fang Yan Du ◽  
Xiang Rong Ma

The nanocrystals Ce0.5Zr0.5O2 solid solutions with various morphologies and crystal structures have been synthesized via a modified sol-gel method assisted with a template. Aerosol OT and/or ionic liquids ([MMIM]Cl] and [BMIM]Cl]) was used as a template. The characterization results of the X-ray diffraction, transmission electron microscopy and N2 adsorption at 77 K indicate that the physical properties of the solid solutions were significantly affected by the templates used and the calcination temperatures. The Ce0.5Zr0.5O2 calcined at 773 K possessed bimodal mesopores, narrow pore size distributions, and tetragonal phase.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
D. K. Calvo Ramos ◽  
M. Vega González ◽  
R. A. Esparza Muñóz ◽  
J. Santos Cruz ◽  
F. J. De Moure-Flores ◽  
...  

Titanium dioxide (TD) and graphene oxide (GO) were synthesized by sol-gel and improved Hummers method, respectively. This study shows the results of the incorporation through four different conditions (sol-gel, sol-gel and ultrasonic, annealed, and UV radiation, C1 to C4, respectively). It was observed that a homogeneous incorporation of TD on sheets of GO was obtained satisfactorily. The composites of TiO2/GO were characterized using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and infrared spectroscopy (IR). The photocatalytic activity of the composites was determined from the degradation of the dye azo tartrazine using UV and solar radiation. The best incorporation of TD nanoparticles on GO was obtained with condition C3 (thermal incorporation method) at a temperature of 65°C. This shows a uniformity in the size and shape of the TD as well as an excellent adherence to the sheet of GO. This addition is accomplished by ionic bonding in the presence of electrostatic Coulomb forces. The C3 composite degraded the tartrazine dye using UV radiation and sunlight. With the latter, the degradation time was three times faster than using UV light.


2016 ◽  
Vol 254 ◽  
pp. 200-206 ◽  
Author(s):  
Catalina Nuțescu Duduman ◽  
María Isabel Barrena Pérez ◽  
José Maria Gómez de Salazar ◽  
Ioan Carcea ◽  
Daniela Lucia Chicet ◽  
...  

Nanostructured SnO2 was prepared based on the sol-gel method used in the preparation of crystalline metal oxides. Sol-gel process can be described as a forming network of oxide polycondensation reaction of a molecular precursor in a liquid. Six experiments were carried out. Morphological structures and chemical composition were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after calcination. It is noted that TEM images show that the spheres consist from nanocrystals, quantitative EDS analysis of the chemical composition shows an absence of the chlorine, which is a desired fact. For structural characterization of the material we used X-Ray Diffraction (XRD). The X-ray diffraction pattern for all samples indicates peaks which are agreeable with standard diffraction pattern of SnO2. The particle size of all samples was in the range of 28-92 nm calculated according to Scherrer equation.


2012 ◽  
Vol 1481 ◽  
pp. 127-133
Author(s):  
A. Medina ◽  
L. Béjar ◽  
G. Herrera-Pérez

ABSTRACTZinc oxide (ZnO) nanoparticles were produced using chemical precipitation synthesis with a molar ratio of 1:1, 1:2 and 1:3. The structure, chemical composition and morphology were investigated by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). XRD and EDS demonstrated that the all particles formed at different atomic proportion were of wurtzite crystal structure with the same chemical composition. SEM and TEM showed the formation of hexagonal particles with a molar ratio of 1:1 while the samples synthesized with a molar ratio 1:2 and 1:3 showed a circular shape. HRTEM and Fast Fourier Transform (FFT) demonstrated that the all particles were formed with a preferable [0001] growth direction.


Sign in / Sign up

Export Citation Format

Share Document