Sol-gel processing of nanocrystalline haematite thin films

1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.

1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


1996 ◽  
Vol 11 (12) ◽  
pp. 3146-3151 ◽  
Author(s):  
E. Czerwosz ◽  
P. Byszewski ◽  
R. Diduszko ◽  
H. Wronka ◽  
P. Dluźewski ◽  
...  

C60/C70: Ni films with 1.5 wt. % Ni concentration obtained by vacuum deposition under different thermal conditions have been investigated. The structural changes of the layers were investigated by transmission electron microscopy, electron and x-ray diffraction, and Raman spectroscopy. The polycrystalline structure was detected for the layers grown at approximately 450 K on the substrate. At elevated temperature and maintained temperature gradient on the substrate during the process, the changes of the layer's structure and the formation of Ni microcrystals were observed. The Ni microcrystals (5–10 nm in the diameter) and the elongated shapes dimensioned 10 × 150 nm were perceived.


2013 ◽  
Vol 385-386 ◽  
pp. 7-10
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown double-layered films were synthesized with a FePt: C composite layer on top of continuous FePt underlayer. The thickness of FePt was changed from 2 nm to 14 nm. Nanostructures, crystalline orientations and the effect of FePt underlayer on the ordering, orientation and magnetic properties of the thin films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). XRD confirmed the formation of the ordered L10phase for 5 nm FePt: C film with FePt thickness decreased to 5 nm. TEM studies of FePt:C composite L10phase and double-layered deposition FePt:C/FePt were presented.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sanja Ćulubrk ◽  
Željka Antić ◽  
Vesna Lojpur ◽  
Milena Marinović-Cincović ◽  
Miroslav D. Dramićanin

Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd2Ti2O7pyrochlore nanopowders. According to Gd2Ti2O7precursor gel thermal analysis a temperature of 840°C is identified for the formation of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron microscopy shows that investigated Eu3+-doped Gd2Ti2O7nanopowders consist of compact, dense aggregates composed entirely of nanoparticles with variable both shape and dimension. The influence of Eu3+ions concentration on the optical properties, namely, photoluminescence emission and decay time, is measured and discussed. Emission intensity as a function of Eu3+ions concentration shows that Gd2Ti2O7host can accept Eu3+ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3 at.% (~2.7 ms) and experience decrease at higher concentrations (2.4 ms for 10 at.% Eu3+). Moreover, photoluminescent spectra and lifetime values clearly revealed presence of structural defects in sol-gel derived materials proposing photoluminescent spectroscopy as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jinghua Liu ◽  
Yinghua Niu ◽  
Xiong He ◽  
Jingyao Qi ◽  
Xin Li

TiO2-graphene (TiO2-RGO) nanocomposites were preparedviaa simple chemical method by using graphene oxide (GO) and TiO2nanoparticles as starting materials. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, N2adsorption-desorption measurements, and transmission electron microscopy. TiO2-RGO nanocomposites exhibited great photocatalytic activity toward reduction of CO2into CH4(2.10 μmol g−1 h−1) and CH3OH (2.20 μmol g−1 h−1), which is attributed to the synergistic effect between TiO2and graphene.


Sign in / Sign up

Export Citation Format

Share Document