Recrystallization Mechanisms in Severely Deformed Dual-Phase Stainless Steel

2010 ◽  
Vol 638-642 ◽  
pp. 1905-1910 ◽  
Author(s):  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Yuuji Kimura ◽  
Kaneaki Tsuzaki

The structural recrystallization mechanisms operating in an Fe – 27%Cr – 9% Ni dual-phase (ferrite-austenite) stainless steel after large strain processing to total strain of 4.4 were investigated in the temperature range of 400-700oC. The severe deformation resulted in the development of an ultrafine grained microstructure consisting of highly elongated grains/subgrains with transverse dimensions of 160 nm and 130 nm in ferrite and austenite, respectively. The annealing mechanism operating in ferrite phase was considered as continuous recrystallization, which involved recovery leading to the development of essentially polygonized microstructure. On the other hand, the mechanism of discontinuous nucleation took place at an early recrystallization stage in austenite phase.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2116 ◽  
Author(s):  
Marina Odnobokova ◽  
Zhanna Yanushkevich ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

The ultrafine-grained microstructures and their effect on the yield strength of a 316L-type austenitic stainless steel processed by large strain cold/warm rolling and subsequent annealing were studied. A kind of continuous recrystallization developed during annealing, resulting in the evolution of uniform ultrafine-grained microstructures with relatively high residual dislocation densities. The development of such microstructure at 973 K led to excellent combination of tensile properties including high yield strength (σ0.2 > 900 MPa) and satisfactory plasticity (δ > 15%). A unique power law function between the annealed grain size and the dislocation density with a dislocation density exponent of −0.5 was obtained for these continuously recrystallized microstructures. A physically justified explanation of the observed structural/substructural strengthening is introduced.


2007 ◽  
Vol 22 (11) ◽  
pp. 3042-3051 ◽  
Author(s):  
A. Belyakov ◽  
K. Tsuzaki ◽  
Y. Kimura ◽  
Y. Mishima

Mechanisms of microstructure evolution during annealing after cold working were studied in an Fe-15%Cr ferritic stainless steel, which was processed by bar rolling/swaging to various total strains ranging from 1.0 to 7.3 at ambient temperature. Two types of recrystallization behavior were observed depending on the cold strain. An ordinary primary (discontinuous) recrystallization developed in the samples processed to conventional strains of 1.0–2.0. On the other hand, rapid recovery at early annealing resulted in ultrafine-grained microstructures in the larger strained samples that continuously coarsened on further annealing. Such annealing behavior was considered as continuous recrystallization.


2006 ◽  
Vol 503-504 ◽  
pp. 323-328 ◽  
Author(s):  
Andrey Belyakov ◽  
Yuuji Kimura ◽  
Kaneaki Tsuzaki

The annealing behaviour of an Fe – 22%Cr – 3%Ni ferritic stainless steel processed by bar rolling/swaging to total strain of 4.4 at an ambient temperature was studied in the temperature range of 400 ~ 700oC. The annealing behaviour was characterised by the development of continuous recrystallization involving recovery processes followed by a normal grain growth. The large strain deformation caused the very fast recovery resulting in the development of almost equiaxed polygonized microstructure in place of the highly elongated deformation (sub)grains. The polygonization development was accompanied by some increase in the transverse (sub)grain size and the formation of many low-angle subboundaries. The latter ones could be composed from the dislocations, which were emitted by the strain-induced deformation (sub)boundaries. In spite of relatively large fraction of low-angle subboundaries, such polygonized microstructure was essentially stable against a discontinuous grain coarsening. Upon further annealing, therefore, the microstructure evolution was considered as a normal grain growth.


Sign in / Sign up

Export Citation Format

Share Document