Characterization and Properties of Recycled Cellulose Fibre- Reinforced Epoxy-Hybrid Clay Nanocomposites

2010 ◽  
Vol 654-656 ◽  
pp. 2624-2627 ◽  
Author(s):  
Hatem Alamri ◽  
It Meng Low

In this paper, epoxy eco-composites reinforced with recycled cellulose fiber (RCF) and nano-fillers such as nano-clay platelets (30B) and halloysite nanotubes (HNTs), have been fabricated and investigated. The influences of RCF/nano-filler dispersion on the microstructure, physical and mechanical characteristics have been characterized. Results indicate that flexural strength decreased for the majority of study samples due to the poor dispersion of nano-fillers and the existence of voids within the samples. In contrast, impact toughness and fracture toughness were improved for all reinforced samples. The effect of water absorption was positive in terms of enhancing the impact toughness of the composites. Addition of nanoclay was found to increase the porosities of all nanocomposites.

Author(s):  
Bunyod Gayratovich Igamberdiev ◽  
◽  
Rolan Sobirovich Yulyakshiev ◽  
Sadokat Abdullazhonovna Karimova ◽  
◽  
...  

Author(s):  
Andriy Andrukhiv ◽  
Andriy Baranov ◽  
Nadiia Huzyk ◽  
Bohdan Sokil ◽  
Mariia Sokil

The technique of research of dynamic processes of elements of engineering constructions of special purpose from explosive action of projectiles is developed. Elastically reinforced beams with hinged ends were chosen for the physical model of elements of engineering structures. It is assumed that the elastic properties of the latter satisfy the nonlinear technical law of elasticity. A mathematical model of the process of a series of impact actions of projectiles at different points of the element of the protective structure is constructed. The latter is a boundary value problem for a partial differential equation. Its peculiarity is that the external dynamic action is a discrete function of linear and time variables. To determine the dynamic effect of a series of impacts on the object under study, and thus the level of protection of the structure, the basic ideas of perturbation theory methods are extended to new classes of systems. This allowed to obtain an analytical dependence of the deformation of the elastically reinforced element on the basic physical and mechanical characteristics of the material of the protective element, its reinforcement and the characteristics of the external action of the projectiles. It is shown that the most dangerous cases, given the security of the structure, are those when the impact is repeated at equal intervals, in addition, the point of impact is closer to the middle of the protective element. The obtained theoretical results can be the basis for selection at the stage of designing the main physical and mechanical characteristics of the elements of engineering structures and their reinforcement in order to reliably protect personnel and equipment from the maximum possible impact on it of the shock series of projectiles. The reliability of the obtained results is confirmed by: a) generalization of widely tested methods to new classes of dynamical systems; b) obtaining in the limit case the consequences known in scientific sources concerning the linearly elastic characteristics of the elements of protective structures; c) their consistency with the essence of the physical process itself, which is considered in the work.


Author(s):  
Лопанов ◽  
Aleksandr Lopanov ◽  
Фанина ◽  
Evgeniya Fanina ◽  
Томаровщенко ◽  
...  

The article presents the research results of physical and mechanical characteristics of carbon-containing resistive materials based on cement binder. The regulation limit of the compressive strength of the composites was carried out using mechanochemical methods. Synthesized modifying additive on the basis of ether polycarboxylates, salts of iron and of shungite to reduce water-cement ratio and permeability of conductive fine-grained concrete, as well as to improve the strength characteristics of the compositions. Studied the morphology of tumors in the cement matrix.


Author(s):  
Прут ◽  
Eduard Prut ◽  
Черкашина ◽  
Natalya Cherkashina ◽  
Матюхин ◽  
...  

This paper presents data on the development of polymer composites by hot pressing based thermoplastic elastomers and the effect of pressure and compressing the mixture a filler matrix final physical and mechanical characteristics of the highly filled composites. The paper deals with the pressure range from 100 MPa to 1 GPa. Composite studied parameters depending on the pressure, density and were tensile strength. Studies conducted for the optimal composite composition comprising a thermoplastic elastomer, 30% and 70% of fine filler lung - dimethylpolysiloxane of silica gel. It has been shown that increasing the value of specific pressure of 200 to 800 MPa, the density of the composite is increased by 10% or more is not changed. By increasing the value of the specific pressure of 200 to 700 MPa tensile strength is increased by 5%. The paper found that with increasing pressure ranging from 700 MPa, the tensile strength does not change in tension, and the curve flattens out. From conducted research on the impact of compaction pressure on the final physical and mechanical characteristics of the highly filled composites can be argued that for the synthesis of the composite with the best features you want to use compression pressure of at least 800 MPa.


2020 ◽  
pp. 22-26
Author(s):  
YURY G. IVANOV ◽  
◽  
YELENA V. MASHOSHINA ◽  
LYUDMILA N. VERLIKOVA ◽  
DARIA G. GELETIY ◽  
...  

2020 ◽  
Vol 787 (12) ◽  
pp. 63-65
Author(s):  
N.S. Sokolov

The problem of increasing the bearing capacity of the base is an relevant problem in modern geotechnical construction. When significant loads are transmitted to the base, the use of traditional technologies is not always justified. Often there is an urgent need to use non-standard ways to strengthen the bases. In many cases, the geotechnical situation is aggravated by the presence of weak underlying layers with unstable physical and mechanical characteristics in engineering-geological sections. When strengthening such bases with the help of traditional piles, the latter can get negative friction, which significantly reduces their bearing capacity on the ground, sometimes reaching zero values. This may lead to additional precipitations of the objects being constructed and constructed in the zone of geotechnical influence. The use of ERT piles in most cases successfully solves many complex geotechnical problems.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


2021 ◽  
pp. 002199832199432
Author(s):  
Yacine Ouroua ◽  
Said Abdi ◽  
Imene Bachirbey

Multifunctional composite materials are highly sought-after by the aerospace and aeronautical industry but their performance depends on their ability to sustain various forms of damages, in particular damages due to repeated impacts. In this work we studied the mechanical behavior of a layered glass-epoxy composite with copper inserts subjected to fatigue under repeated impacts with different energy levels. Damage evolution as a function of impact energy was carefully monitored in order to determine the effect of the copper inserts on mechanical characteristics of the multifunctional composite, such as endurance and life. Results of repeated impact tests show that electric current interruption in the copper inserts occurs prior to the total perforation of the composite material, and after about 75% of the total number of impacts to failure. This is the case for the three energy levels considered in this study, [Formula: see text] = 2, 3 and 4 Joules. The epoxy resin was dissolved chemically in order to preserve the mechanical structure of the damaged copper inserts and the composite fibers for further inspection and analysis. Scanning electron microscopy (SEM) of the fractured copper inserts revealed interesting information on the nature of the damage, including information on plastic deformation, strain hardening, cracking mode, temperature increase during the impacts, and most importantly the glass fibers and their roles during the impact-fatigue tests.


Sign in / Sign up

Export Citation Format

Share Document