hybrid fabric
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 534-546
Author(s):  
Ashley Kubley ◽  
Megha Chitranshi ◽  
Xiaoda Hou ◽  
Mark Schulz

The integration of carbon nanotube fabric into textiles is paving its way into smart materials and wearable applications. Potential novel applications of carbon nanotube hybrid (CNTH) materials and fabric composites span across a range of market levels from high-level PPE appropriate for military and industrial applications down to consumer products that can be used in everyday scenarios. The high-level performance properties of CNTH materials and their ability to be customized provide new possibilities for constructing fabrics with properties that are made to order. Furthermore, CNTH in combination with advanced textile compositing and construction methods allows the CNTH material to further leverage material customization aspects to meet specific requirements. The unique synthesis process for nanotube fabric allows for modification of the physical properties of the CNTH itself. The CNTH fabric combined with the customizability of standard textile composite materials and with the use of apparel design features allows for the design of materials with new combinations of physical properties. These unique properties offer high potential for developing families of smart wearable garments that can be scaled for industrial production. This article discusses the synthesis of carbon nanotube hybrid fabric, the process of hybrid fabric and textile integration, properties of the hybrid textile, and potential applications. The paper also provides an outlook towards large scale production of the hybrid textile material.


Author(s):  
Clifton Stephen ◽  
B. Shivamurthy ◽  
Abdel-Hamid I. Mourad ◽  
Rajiv Selvam

AbstractIn this study, non-hybrid and hybrid (Kevlar, carbon and glass) fabric epoxy composite laminates were fabricated with different stacking sequences by hand lay-up followed by hot-compression molding. Experimental tests were conducted to investigate tensile, flexural, and hardness characteristics. It was found that the stacking sequence did not significantly affect the tensile strength and hardness values of the composites; however, it affected their flexural strength. Damage morphology of the specimens through SEM images showed that the major damage mechanisms in the composites were delamination, fiber breakage, pull-out, and matrix cracking. Based on the static experimental results, the high-velocity impact behavior was investigated through simulation study using LS-DYNA finite element analysis (FEA) software. To study the ballistic impact, a steel projectile with a hemispherical penetrating edge at impact velocities of 100 m.s−1, 250 m.s−1, and 350 m.s−1 was considered. Among non-hybrid fabric epoxy composite specimens, Kevlar/epoxy specimen was found to have the highest impact energy absorption followed by carbon/epoxy and glass/epoxy, respectively. Regarding the hybrid fabric epoxy composite specimens, the ones with Kevlar plies in the rear face exhibited better energy absorption compared to other stacking sequences. The non-hybrid glass/epoxy specimen had the lowest energy absorption and highest post-impact residual velocity of projectile among all specimens. From the FEA results, it was noted that impact resistance of hybrid composites improved when Kevlar fabric was placed in the rear layer. Thus, the stacking sequence was observed to be of substantial importance in the development of fabric-reinforced composite laminates for high-velocity impact applications.


Author(s):  
Suresha K V ◽  
Shivanand H K ◽  
Srinivas K ◽  
Vignesh M ◽  
Swaroop Swaroop

Hybrid fabrics are represented by their excellent mechanical and structural properties as compared to conventional metals, which results in their increased functions especially for structural, aerospace applications, automotive, defense as well as sporting industries. In this paper the hybrid fabric (Jute, glass, carbon, Kevlar) composites are prepared by hand layup method and then vacuum bagging is used to avoid voids. The hardness, impact and machinablity test are performed by Rockwell hardness testing machine, Impact testing machine and Drill tool dynamometer respectively. From the results it has been observed that different parameter affects the hardness, toughness and machining of composites


2020 ◽  
Author(s):  
Jonathan R. Burns

AbstractDNA nanotechnology enables user-defined structures to be built with unrivalled control. However, the approach is currently restricted across the nanoscale, yet the ability to generate macroscopic DNA structures has enormous potential with applications spanning material, physical and biological science. I have employed DNA nanotechnology[1, 2] and developed a new macromolecular nanoarchitectonic[3] assembly method to produce DNA fibers with customizable properties. The process involves coalescing DNA nanotubes under high salt conditions to yield filament superstructures. Using this strategy, fibers over 100 microns long, with stiffnesses 10 times greater than cytoskeletal actin filaments can be fabricated. The DNA framework enables fibers to be functionalized with advanced synthetic molecules, including, aptamers, origami, nanoparticles and vesicles. In addition, the fibers can act as bacterial extracellular scaffolds and align E.coli cells in a controllable fashion. The results showcase the opportunities offered from DNA nanotechnology across the macroscopic scale. The new biophysical approach should find widespread use, from the generation of hybrid-fabric materials, platforms to study cell-cell interactions, to smart analytical and purification devices in biomedicine.


2020 ◽  
Vol 33 ◽  
pp. 11-17 ◽  
Author(s):  
Xiaogang Luo ◽  
Yunxia Liang ◽  
Wei Weng ◽  
Zexu Hu ◽  
Yang Zhang ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 133-139
Author(s):  
Carla Hertleer ◽  
Jeroen Meul ◽  
Gilbert De Mey ◽  
Simona Vasile ◽  
Sheilla A. Odhiambo ◽  
...  

AbstractElectro-conductive (EC) yarns can be woven into a hybrid fabric to enable electrical current to flow through the fabric from one component A to another component B. These hybrid fabrics form the bases of woven e-textiles. However, at the crossing point of an EC yarn in warp and in weft direction, there is a contact resistance and thus generation of heat may occur in this area. Both phenomena are inseparable: if the contact resistance in the EC contact increases, the generated heat will increase as well. Predicting this electrical and thermal behavior of EC contacts in hybrid woven fabrics with stainless steel yarns is possible with a mathematical model based on the behavior of a metal oxide varistor (MOV). This paper will discuss in detail how this can be achieved.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1140 ◽  
Author(s):  
Yu-Chun Chuang ◽  
Limin Bao ◽  
Mei-Chen Lin ◽  
Ching-Wen Lou ◽  
TingAn Lin

With the development of technology, fibers and textiles are no longer exclusive for the use of clothing and decoration. Protective products made of high-strength and high-modulus fibers have been commonly used in different fields. When exceeding the service life, the protective products also need to be replaced. This study proposes a highly efficient recycling and manufacturing design to create more added values for the waste materials. With a premise of minimized damage to fibers, the recycled selvage made of high strength PET fibers are reclaimed to yield high performance staple fibers at a low production cost. A large amount of recycled fibers are made into matrices with an attempt to decrease the consumption of new materials, while the combination of diverse plain woven fabrics reinforces hybrid-fabric fibrous planks. First, with the aid of machines, recycled high strength PET fibers are processed into staple fibers. Using a nonwoven process, low melting point polyester (LMPET) fibers and PET staple fibers are made into PET matrices. Next, the matrices and different woven fabrics are combined in order to form hybrid-fabric fibrous planks. The test results indicate that both of the PET matrices and fibrous planks have good mechanical properties. In particular, the fibrous planks yield diverse stab resistances from nonwoven and woven fabrics, and thus have greater stab performance.


Sign in / Sign up

Export Citation Format

Share Document