Nonlinear Optical Studies on a New Poly{2-(biphenyl-4-yl)-5-[3,4-didecyloxy-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-1,3,4-oxadiazole}

2010 ◽  
Vol 657 ◽  
pp. 56-61 ◽  
Author(s):  
Pramod Kumar Hegde ◽  
Airody Vasudeva Adhikari ◽  
M.G. Manjunatha ◽  
C.S. Suchand Sandeep ◽  
Philip Reji

Measurements of nonlinear optical properties of a newly synthesized thiophene based polymer are reported. The nonlinear transmission measurements were performed on the polymer dissolved in N,N-dimethylformamide by employing the single beam Z-scan technique using a Q-switched laser output at 532-nm. The polymer shows strong optical limiting behavior, where the transmittance decreases when the pump fluence is increased. It was found that an effective three-photon absorption (3PA) model at the excitation wavelength gives the best fit to the obtained experimental data. The value of the 3PA coefficient has been numerically calculated. This study clearly reveals the potential of new polymeric material has, for optical limiting applications.

2009 ◽  
Vol 18 (04) ◽  
pp. 583-589 ◽  
Author(s):  
YUNDONG ZHANG ◽  
LEI MA ◽  
CHAOBO YANG ◽  
PING YUAN

The nonlinear-optical and optical limiting properties of 2(3), 9(10), 16(17), 23(24) phenoxy-phthalocyanines have been investigated using a 10-ns-pulse laser at 532 nm. The nonlinear absorption coefficient (β) is measured by the single beam Z-scan technique. We have observed low power optical limiting, with low limiting thresholds, based on nonlinear absorption in the sample. These studies indicate that the phthalocyanine material is a potential candidate for low power optical limiting applications.


2017 ◽  
Vol 21 (04-06) ◽  
pp. 263-272 ◽  
Author(s):  
Njemuwa Nwaji ◽  
Owolabi M. Bankole ◽  
Jonathan Britton ◽  
Tebello Nyokong

In this study, the photophysical, nonlinear absorption and nonlinear optical limiting properties of zinc and gallium phthalocyanine complexes: tetrakis[(benzo[d]thiazol-2-yl phenoxy)phthalocyaninato]zinc(II) (3), tetrakis[(benzo[d]thiazol-2-yl phenoxy)phthalocyaninato] gallium(III) chloride (4), tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] zinc(II) (5), tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] gallium(III) chloride (6), were investigated both in solution and when embedded in polystyrene thin films using 532 nm laser excitation at 10 ns pulses. It was also observed that complexes that have higher triplet state absorption also possessed enhanced nonlinear and optical limiting behavior. Superior optical performance was observed when the complexes were embedded in thin films compared to when they are in solution. Complex 6 in thin films gave the highest imaginary third-order susceptibility (I[Formula: see text][X[Formula: see text]]) and hyperpolarizability ([Formula: see text] at 4.61 × 10[Formula: see text] esu and 3.44 × 10[Formula: see text] esu, respectively, with a low I[Formula: see text] value of 0.06 J.cm[Formula: see text]


2021 ◽  
pp. 130559
Author(s):  
AA Ummu Habeeba ◽  
M. Saravanan ◽  
T.C. Sabari Girisun ◽  
S Anandan

RSC Advances ◽  
2014 ◽  
Vol 4 (76) ◽  
pp. 40152-40160 ◽  
Author(s):  
Irene Papagiannouli ◽  
Athanasios B. Bourlinos ◽  
Aristides Bakandritsos ◽  
Stelios Couris

Nanodiamonds (NDs) and carbon-dots (CDs) suspensions exhibit significant NLO response under both ps and ns laser excitation. NDs exhibit important optical limiting action under nanosecond visible (532 nm) and infrared (1064 nm) laser excitation.


2000 ◽  
Vol 09 (02) ◽  
pp. 217-225 ◽  
Author(s):  
P. SREERAMANA AITHAL ◽  
P. PREM KIRAN ◽  
D. NARAYANA RAO

Optical limiting characteristics of pure and 150 ppm Fe-doped Bi 12 SiO 20 (BSO:Fe) crystals are studied at high intensity nanosecond pulse regime. When the input light is at 532 nm and at 595 nm with 6 ns pulse duration, a good optical limiting behavior is observed due to simultaneous effect of trap assisted excited state absorption and two photon absorption. The precise role of the internal defects due to impurity centers present in the crystal lattice is explained on the basis of a four level model. This study reveal that the increased nonlinear absorption due to iron incorporation in BSO makes it an excellent passive optical limiter.


2020 ◽  
Vol 8 (30) ◽  
pp. 10197-10203
Author(s):  
Zhiwei Liu ◽  
Bin Zhang ◽  
Ningning Dong ◽  
Jun Wang ◽  
Yu Chen

Fluorine-containing gallium phthalocyanine (F16PcGa) axially grafted black phosphorus (BP) nanosheets (F16PcGa–BP) were synthesized by reaction of F16PcGaCl with 4-hydroxylbenzenediazonium tetrafluoroborate-functionalized BP (4-HBT-BP). In contrast to BP and F16PcGaCl, F16PcGa–BP exhibits better nonlinear optical and optical limiting responses at 532 nm.


2019 ◽  
Vol 4 (1) ◽  
pp. 51-62
Author(s):  
Enza Fazio ◽  
Luisa D'Urso ◽  
Rosalba Saija ◽  
Saveria Santangelo ◽  
Fortunato Neri

Background: Metallic–dielectric plasmonic nanoparticles have recently aroused great interest in view of many and novel technological applications, based on the interaction between light and matter under intense field conditions, in nonlinear integrated photonics and opto-fluidics, thanks to the possibility of tuning their electronic and optical properties through a fine control of the synthesis parameters and their nanoparticles under a high-power laser, like the one used during z-scan measures. Objective: The goal of this work is the study of nonlinear optical properties (as nonlinear refraction, scattering, two-photon absorption, optical limiting) of colloids synthesized in different liquid media by Pulsed laser ablation in liquids (PLAL), which is a photo-assisted synthesis technique ensuring the formation of stable, contaminant-free colloids directly during the ablation process. Methods: Noble metal nanoparticles, metal oxides hybrid nanostructures and silicon-based nanomaterials, were prepared by nanosecond and picosecond PLAL technique, in different media. The third-order nonlinear optical (NLO) properties have been studied by the use of a single beam z-scan technique with Q-switched frequency doubled Nd:YAG laser (λ=532 nm) at 5 ns pulse. Results: 1) A good stability of the PLAL nanocolloids under a high laser power; 2) the limiting threshold reduction inducted by the Ag-Au nanoparticles, the increase of the NLO absorption coefficient β, the reduction of the transmittance/scattering signal and the presence of a pronounced asymmetry of the peak/valley profile of the metal decorated metal oxide nanomaterials compared to the separately produced components. Conclusion: An intriguing coupling between the nature of the optical limiting response and the nanostructures rearrangement upon intense field conditions, explaining z-scan data by a classical approach able to account for the nanoparticles asymmetry and plasmonic effects, are the main results found.


Sign in / Sign up

Export Citation Format

Share Document